Why can’t I reconcile the emissions to achieve 1.5C or 2C of Warming?

Introduction

At heart I am beancounter. That is when presented with figures I like to understand how they are derived. When it comes to the claims about the quantity of GHG emissions that are required to exceed 2°C of warming I cannot get even close, unless by making some a series of  assumptions, some of which are far from being robust. Applying the same set of assumptions I cannot derive emissions consistent with restraining warming to 1.5°C

Further the combined impact of all the assumptions is to create a storyline that appears to me only as empirically as valid as an infinite number of other storylines. This includes a large number of plausible scenarios where much greater emissions can be emitted before 2°C of warming is reached, or where (based on alternative assumptions) plausible scenarios even 2°C of irreversible warming is already in the pipeline.  

Maybe an expert climate scientist will clearly show the errors of this climate sceptic, and use it as a means to convince the doubters of climate science.

What I will attempt here is something extremely unconventional in the world of climate. That is I will try to state all the assumptions made by highlighting them clearly. Further, I will show my calculations and give clear references, so that anyone can easily follow the arguments.

Note – this is a long post. The key points are contained in the Conclusions.

The aim of constraining warming to 1.5 or 2°C

The Paris Climate Agreement was brought about by the UNFCCC. On their website they state.

The Paris Agreement central aim is to strengthen the global response to the threat of climate change by keeping a global temperature rise this century well below 2 degrees Celsius above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 degrees Celsius. 

The Paris Agreement states in Article 2

1. This Agreement, in enhancing the implementation of the Convention, including its objective, aims to strengthen the global response to the threat of climate change, in the context of sustainable development and efforts to eradicate
poverty, including by:

(a) Holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels, recognizing that this would significantly reduce the risks and impacts of climate change;

Translating this aim into mitigation policy requires quantification of global emissions targets. The UNEP Emissions Gap Report 2017 has a graphic showing estimates of emissions before 1.5°C or 2°C warming levels is breached.

Figure 1 : Figure 3.1 from the UNEP Emissions Gap Report 2017

The emissions are of all greenhouse gas emissions, expressed in billions of tonnes of CO2 equivalents. From 2010, the quantity of emissions before the either 1.5°C or 2°C is breached are respectively about 600 GtCO2e and 1000 GtCO2e. It is these two figures that I cannot reconcile when using the same  assumptions to calculate both figures. My failure to reconcile is not just a minor difference. Rather, on the same assumptions that 1000 GtCO2e can be emitted before 2°C is breached, 1.5°C is already in the pipeline. In establishing the problems I encounter I will clearly endeavor to clearly state the assumptions made and look at a number of examples.

 Initial assumptions

1 A doubling of CO2 will eventually lead to 3°C of rise in global average temperatures.

This despite the 2013 AR5 WG1 SPM stating on page 16

Equilibrium climate sensitivity is likely in the range 1.5°C to 4.5°C

And stating in a footnote on the same page.

No best estimate for equilibrium climate sensitivity can now be given because of a lack of agreement on values across assessed lines of evidence and studies.

2 Achieving full equilibrium climate sensitivity (ECS) takes many decades.

This implies that at any point in the last few years, or any year in the future there will be warming in progress (WIP).

3 Including other greenhouse gases adds to warming impact of CO2.

Empirically, the IPCC’s Fifth Assessment Report based its calculations on 2010 when CO2 levels were 390 ppm. The AR5 WG3 SPM states in the last sentence on page 8

For comparison, the CO2-eq concentration in 2011 is estimated to be 430 ppm (uncertainty range 340 to 520 ppm)

As with climate sensitivity, the assumption is the middle of an estimated range. In this case over one fifth of the range has the full impact of GHGs being less than the impact of CO2 on its own.

4 All the rise in global average temperature since the 1800s is due to rise in GHGs. 

5 An increase in GHG levels will eventually lead to warming unless action is taken to remove those GHGs from the atmosphere, generating negative emissions. 

These are restrictive assumptions made for ease of calculations.

Some calculations

First a calculation to derive the CO2 levels commensurate with 2°C of warming. I urge readers to replicate these for themselves.
From a Skeptical Science post by Dana1981 (Dana Nuccitelli) “Pre-1940 Warming Causes and Logic” I obtained a simple equation for a change in average temperature T for a given change in CO2 levels.

ΔTCO2 = λ x 5.35 x ln(B/A)
Where A = CO2 level in year A (expressed in parts per million), and B = CO2 level in year B.
I use λ = .809, so that if B = 2A, ΔTCO2 = 3.00

Pre-industrial CO2 levels were 280ppm. 3°C of warming is generated by CO2 levels of 560 ppm, and 2°C of warming is when CO2 levels reach 444 ppm.

From the Mauna Loa CO2 data, average CO2 levels averaged 407 ppm in 2017. Given the assumption (3) and further assuming the impact of other GHGs is unchanged, 2°C of warming would have been surpassed in around 2016 when CO2 levels averaged 404 ppm. The actual rise in global average temperatures is from HADCRUT4 is about half that amount, hence the assumption that the impact of a rise in CO2 takes an inordinately long time for the actual warming to reveal itself. Even with the assumption that 100% of the warming since around 1800 is due to the increase in GHG levels warming in progress (WIP) is about the same as revealed warming. Yet the Sks article argues that some of the early twentieth century warming was due to other than the rise in GHG levels.

This is the crux of the reconciliation problem. From this initial calculation and based on the assumptions, the 2°C warming threshold has recently been breached, and by the same assumptions 1.5°C was likely breached in the 1990s. There are a lot of assumptions here, so I could have missed something or made an error. Below I go into some key examples that verify this initial conclusion. Then I look at how, by introducing a new assumption it is claimed that 2°C warming is not yet reached.

100 Months and Counting Campaign 2008

Trust, yet verify has a post We are Doomed!

This tracks through the Wayback Machine to look at the now defunct 100monthsandcounting.org campaign, sponsored by the left-wing New Economics Foundation. The archived “Technical Note” states that the 100 months was from August 2008, making the end date November 2016. The choice of 100 months turns out to be spot-on with the actual data for CO2 levels; the central estimate of the CO2 equivalent of all GHG emissions by the IPCC in 2014 based on 2010 GHG levels (and assuming other GHGs are not impacted); and the central estimate for Equilibrium Climate Sensitivity (ECS) used by the IPCC. That is, take 430 ppm CO2e, and at 14 ppm for 2°C of warming.
Maybe that was just a fluke or they were they giving a completely misleading forecast? The 100 Months and Counting Campaign was definitely not agreeing with the UNEP Emissions GAP Report 2017 in making the claim. But were they correctly interpreting what the climate consensus was saying at the time?

The 2006 Stern Review

The “Stern Review: The Economics of Climate Change” (archived access here) that was commissioned to provide benefit-cost justification for what became the Climate Change Act 2008. From the Summary of Conclusions

The costs of stabilising the climate are significant but manageable; delay would be dangerous and much more costly.

The risks of the worst impacts of climate change can be substantially reduced if greenhouse gas levels in the atmosphere can be stabilised between 450 and 550ppm CO2 equivalent (CO2e). The current level is 430ppm CO2e today, and it is rising at more than 2ppm each year. Stabilisation in this range would require emissions to be at least 25% below current levels by 2050, and perhaps much more.

Ultimately, stabilisation – at whatever level – requires that annual emissions be brought down to more than 80% below current levels. This is a major challenge, but sustained long-term action can achieve it at costs that are low in comparison to the risks of inaction. Central estimates of the annual costs of achieving stabilisation between 500 and 550ppm CO2e are around 1% of global GDP, if we start to take strong action now.

If we take assumption 1 that a doubling of CO2 levels will eventually lead to 3.0°C of warming and from a base CO2 level of 280ppm, then the Stern Review is saying that the worst impacts can be avoided if temperature rise is constrained to 2.1 – 2.9°C, but only in the range of 2.5 to 2.9°C does the mitigation cost estimate of 1% of GDP apply in 2006. It is not difficult to see why constraining warming to 2°C or lower would not be net beneficial. With GHG levels already at 430ppm CO2e, and CO2 levels rising at over 2ppm per annum, the 2°C of warming level of 444ppm (or the rounded 450ppm) would have been exceeded well before any global reductions could be achieved.

There is a curiosity in the figures. When the Stern Review was published in 2006 estimated GHG levels were 430ppm CO2e, as against CO2 levels for 2006 of 382ppm. The IPCC AR5 states

For comparison, the CO2-eq concentration in 2011 is estimated to be 430 ppm (uncertainty range 340 to 520 ppm)

In 2011, when CO2 levels averaged 10ppm higher than in 2006 at 392ppm, estimated GHG levels were the same. This is a good example of why one should take note of uncertainty ranges.

IPCC AR4 Report Synthesis Report Table 5.1

A year before the 100 Months and Counting campaign The IPCC produced its Fourth Climate Synthesis Report. The 2007 Synthesis Report on Page 67 (pdf) there is table 5.1 of emissions scenarios.

Figure 2 : Table 5.1. IPCC AR4 Synthesis Report Page 67 – Without Footnotes

I inputted the various CO2-eq concentrations into my amended version of Dana Nuccitelli’s magic equation and compared to the calculation warming in Table 5.1

Figure 3 : Magic Equation calculations of warming compared to Table 5.1. IPCC AR4 Synthesis Report

My calculations of warming are the same as that of the IPCC to one decimal place except for the last two calculations. Why are there these rounding differences? From a little fiddling in Excel, it would appear to me that the IPCC got the warming results from a doubling of 3 when calculating to two decimal places, whilst my version of the formula is to four decimal places.

Note the following

  • That other GHGs are translatable into CO2 equivalents. Once translated other GHGs they can be treated as if they were CO2.
  • There is no time period in this table. The 100 Months and Counting Campaign merely punched in existing numbers and made a forecast ahead of the GHG levels that would reach the 2°C of warming.
  • No mention of a 1.5°C warming scenario. If constraining warming to 1.5°C did not seem credible in 2007, which should it be credible in 2014 or 2017, when CO2 levels are higher?

IPCC AR5 Report Highest Level Summary

I believe that the underlying estimates of emissions to achieve the 1.5°C or 2°C  of warming used by the UNFCCC and UNEP come from the UNIPCC Fifth Climate Assessment Report (AR5), published in 2013/4. At this stage I introduce an couple of empirical assumptions from IPCC AR5.

6 Cut-off year for historical data is 2010 when CO2 levels were 390 ppm (compared to 280 ppm in pre-industrial times) and global average temperatures were about 0.8°C above pre-industrial times.

Using the magic equation above, and the 390 ppm CO2 levels, there is around 1.4°C of warming due from CO2. Given 0.8°C of revealed warming to 2010, the residual “warming-in-progress” was 0.6°C.

The highest level of summary in AR5 is a Presentation to summarize the central findings of the Summary for Policymakers of the Synthesis Report, which in turn brings together the three Working Group Assessment Reports. This Presentation can be found at the bottom right of the IPCC AR5 Synthesis Report webpage. Slide 33 of 35 (reproduced below as Figure 4) gives the key policy point. 1000 GtCO2 of emissions from 2011 onwards will lead to 2°C. This is very approximate but concurs with the UNEP emissions gap report.

Figure 4 : Slide 33 of 35 of the AR5 Synthesis Report Presentation.

Now for some calculations.

1900 GtCO2 raised CO2 levels by 110 ppm (390-110). 1 ppm = 17.3 GtCO2

1000 GtCO2 will raise CO2 levels by 60 ppm (450-390).  1 ppm = 16.7 GtCO2

Given the obvious roundings of the emissions figures, the numbers fall out quite nicely.

Last year I divided CDIAC CO2 emissions (from the Global Carbon Project) by Mauna Loa CO2 annual mean growth rates (data) to produce the following.

Figure 5 : CDIAC CO2 emissions estimates (multiplied by 3.664 to convert from carbon units to CO2 units) divided by Mauna Loa CO2 annual mean growth rates in ppm.

17GtCO2 for a 1ppm rise is about right for the last 50 years.

To raise CO2 levels from 390 to 450 ppm needs about 17 x (450-390) = 1020 GtCO2. Slide 33 is a good approximation of the CO2 emissions to raise CO2 levels by 60 ppm.

But there are issues

  • If ECS = 3.00, and 17 GtCO2 of emissions to raise CO2 levels by 1 ppm, then it is only 918 (17*54) GtCO2 to achieve 2°C of warming. Alternatively, in future if there are assume 1000 GtCO2 to achieve 2°C  of warming it will take 18.5 GtCO2 to raise CO2 levels by 1 ppm, as against 17 GtCO2 in the past. It is only by using 450 ppm as commensurate with 2°C of warming that past and future stacks up.
  • If ECS = 3,  from CO2 alone 1.5°C would be achieved at 396 ppm or a further 100 GtCO2 of emissions. This CO2 level was passed in 2013 or 2014.
  • The calculation falls apart if other GHGs are included.  Emissions are assumed equivalent to 430 ppm at 2011. Therefore with all GHGs considered the 2°C warming would be achieved with 238 GtCO2e of emissions ((444-430)*17) and the 1.5°C of warming was likely passed in the 1990s.
  • If actual warming since pre-industrial times to 2010 was 0.8°C, ECS = 3, and the rise in all GHG levels was equivalent to a rise in CO2 from 280 to 430 ppm, then the residual “warming-in-progress” (WIP) was just over 1°C. That it is the WIP exceeds the total revealed warming in well over a century. If there is a short-term temperature response is half or more of the value of full ECS, it would imply even the nineteenth century emissions are yet to have the full impact on global average temperatures.

What justification is there for effectively disregarding the impact of other greenhouse emissions when it was not done previously?

This offset is to be found in section C – The Drivers of Climate Change – in AR5 WG1 SPM . In particular the breakdown, with uncertainties, in table SPM.5. Another story is how AR5 reached the very same conclusion as AR4 WG1 SPM page 4 on the impact of negative anthropogenic forcings but with a different methodology, hugely different estimates of aerosols along with very different uncertainty bands. Further, these historical estimates are only for the period 1951-2010, whilst the starting date for 1.5°C or 2°C is 1850.

From this a further assumption is made when considering AR5.

7 The estimated historical impact of other GHG emissions (Methane, Nitrous Oxide…) has been effectively offset by the cooling impacts of aerosols and precusors. It is assumed that this will carry forward into the future.

UNEP Emissions Gap Report 2014

Figure 1 above is figure 3.1 from the UNEP Emissions GAP Report 2017. The equivalent report from 2014 puts this 1000 GtCO2 of emissions in a clearer context. First a quotation with two accompanying footnotes.

As noted by the IPCC, scientists have determined that an increase in global temperature is proportional to the build-up of long-lasting greenhouse gases in the atmosphere, especially carbon dioxide. Based on this finding, they have estimated the maximum amount of carbon dioxide that could be emitted over time to the atmosphere and still stay within the 2 °C limit. This is called the carbon dioxide emissions budget because, if the world stays within this budget, it should be possible to stay within the 2 °C global warming limit. In the hypothetical case that carbon dioxide was the only human-made greenhouse gas, the IPCC estimated a total carbon dioxide budget of about 3 670 gigatonnes of carbon dioxide (Gt CO2 ) for a likely chance3 of staying within the 2 °C limit . Since emissions began rapidly growing in the late 19th century, the world has already emitted around 1 900 Gt CO2 and so has used up a large part of this budget. Moreover, human activities also result in emissions of a variety of other substances that have an impact on global warming and these substances also reduce the total available budget to about 2 900 Gt CO2 . This leaves less than about 1 000 Gt CO2 to “spend” in the future4 .

3 A likely chance denotes a greater than 66 per cent chance, as specified by the IPCC.

4 The Working Group III contribution to the IPCC AR5 reports that scenarios in its category which is consistent with limiting warming to below 2 °C have carbon dioxide budgets between 2011 and 2100 of about 630-1 180 GtCO2

The numbers do not fit, unless the impact of other GHGs are ignored. As found from slide 33, there is 2900 GtCO2 to raise atmospheric CO2 levels by 170 ppm, of which 1900 GtC02 has been emitted already. The additional marginal impact of other historical greenhouse gases of 770 GtCO2 is ignored. If those GHG emissions were part of historical emissions as the statement implies, then that marginal impact would be equivalent to an additional 45 ppm (770/17) on top of the 390 ppm CO2 level. That is not far off the IPCC estimated CO2-eq concentration in 2011 of 430 ppm (uncertainty range 340 to 520 ppm). But by the same measure 3670 GTCO2e would increase CO2 levels by 216 ppm (3670/17) from 280 to 496 ppm. With ECS = 3, this would eventually lead to a temperature increase of almost 2.5°C.

Figure 1 above is figure 3.1 from the UNEP Emissions GAP Report 2017. The equivalent report from the 2014 report ES.1

Figure 6 : From the UNEP Emissions Gap Report 2014 showing two emissions pathways to constrain warming to 2°C by 2100.

Note that this graphic goes through to 2100; only uses the CO2 emissions; does not have quantities; and only looks at constraining temperatures to 2°C.  To achieve the target requires a period of negative emissions at the end of the century.

A new assumption is thus required to achieve emissions targets.

8 Sufficient to achieve the 1.5°C or 2°C warming targets likely requires many years of net negative emissions at the end of the century.

A Lower Level Perspective from AR5

A simple pie chart does not seem to make sense. Maybe my conclusions are contradicted by the more detailed scenarios? The next level of detail is to be found in table SPM.1 on page 22 of the AR5 Synthesis Report – Summary for Policymakers.

Figure 7 : Table SPM.1 on Page 22 of AR5 Synthesis Report SPM, without notes. Also found as Table 3.1 on Page 83 of AR5 Synthesis Report 

The comment for <430 ppm (the level of 2010) is "Only a limited number of individual model studies have explored levels below 430 ppm CO2-eq. ” Footnote j reads

In these scenarios, global CO2-eq emissions in 2050 are between 70 to 95% below 2010 emissions, and they are between 110 to 120% below 2010 emissions in 2100.

That is, net global emissions are negative in 2100. Not something mentioned in the Paris Agreement, which only has pledges through to 2030. It is consistent with the UNEP Emissions GAP report 2014 Table ES.1. The statement does not refer to a particular level below 430 ppm CO2-eq, which equates to 1.86°C. So how is 1.5°C of warming not impossible without massive negative emissions? In over 600 words of notes there is no indication. For that you need to go to the footnotes to the far more detailed Table 6.3 AR5 WG3 Chapter 6 (Assessing Transformation Pathways – pdf) Page 431. Footnote 7 (Bold mine)

Temperature change is reported for the year 2100, which is not directly comparable to the equilibrium warming reported in WGIII AR4 (see Table 3.5; see also Section 6.3.2). For the 2100 temperature estimates, the transient climate response (TCR) is the most relevant system property.  The assumed 90% range of the TCR for MAGICC is 1.2–2.6 °C (median 1.8 °C). This compares to the 90% range of TCR between 1.2–2.4 °C for CMIP5 (WGI Section 9.7) and an assessed likely range of 1–2.5 °C from multiple lines of evidence reported in the WGI AR5 (Box 12.2 in Section 12.5).

The major reason that 1.5°C of warming is not impossible (but still more unlikely than likely) for CO2 equivalent levels that should produce 2°C+ of warming being around for decades is because the full warming impact takes so long to filter through.  Further, Table 6.3 puts Peak CO2-eq levels for 1.5-1.7°C scenarios at 465-530 ppm, or eventual warming of 2.2 to 2.8°C. Climate WIP is the difference. But in 2018 WIP might be larger than all the revealed warming in since 1870, and certainly since the mid-1970s.

Within AR5 when talking about constraining warming to 1.5°C or 2.0°C it is only the warming which is estimated to be revealed in 2100. There is no indication of how much warming in progress (WIP) there is in 2100 under the various scenarios, therefore I cannot reconcile back the figures. However, for GHG  would appear that the 1.5°C figure relies upon a period of over 100 years for impact of GHGs on warming failing to come through as (even netting off other GHGs with the negative impact of aerosols) by 2100 CO2 levels would have been above 400 ppm for over 85 years, and for most of those significantly above that level.

Conclusions

The original aim of this post was to reconcile the emissions sufficient to prevent 1.5°C or 2°C of warming being exceeded through some calculations based on a series of restrictive assumptions.

  • ECS = 3.0°C, despite the IPCC being a best estimate across different studies. The range is 1.5°C to 4.5°C.
  • All the temperature rise since the 1800s is assumed due to rises in GHGs. There is evidence that this might not be the case.
  • Other GHGs are netted off against aerosols and precursors. Given that “CO2-eq concentration in 2011 is estimated to be 430 ppm (uncertainty range 340 to 520 ppm)” when CO2 levels were around 390 ppm, this assumption is far from robust.
  • Achieving full equilibrium takes many decades. So long in fact that the warming-in-progress (WIP) may currently exceed all the revealed warming in over 150 years, even based on the assumption that all of that revealed historical warming is due to rises in GHG levels.

Even with these assumptions, keeping warming within 1.5°C or 2°C seems to require two assumptions that were not recognized a few years ago. First is to assume net negative global emissions for many years at the end of the century. Second is to talk about projected warming in 2100 rather than warming as a resultant on achieving full ECS.

The whole exercise appears to rest upon a pile of assumptions. Amending the assumptions means one way means admitting that 1.5°C or 2°C of warming is already in the pipeline, or the other way means admitting climate sensitivity is much lower. Yet there appears to be a very large range of empirical assumptions to chose from there could be there are a very large number of scenarios that are as equally valid as the ones used in the UNEP Emissions Gap Report 2017.

Kevin Marshall

Milk loss yields down to heat stress

Last week, Wattupwiththat post “Climate Study: British Children Won’t Know What Milk Tastes Like”. Whilst I greatly admire Anthony Watts, I think this title entirely misses the point.
It refers to an article at the Conservation “How climate change will affect dairy cows and milk production in the UK – new study” by two authors at Aberystwyth University, West Wales. This in turn is a write up of a Plos One article published in May “Spatially explicit estimation of heat stress-related impacts of climate change on the milk production of dairy cows in the United Kingdom“. The reason I disagree is that even with very restrictive assumptions, this paper shows that even with large changes in temperature, the unmitigated costs of climate change are very small. The authors actually give some financial figures. Referring to the 2190s the PLOS One abstract ends:-

In the absence of mitigation measures, estimated heat stress-related annual income loss for this region by the end of this century may reach £13.4M in average years and £33.8M in extreme years.

The introduction states

The value of UK milk production is around £4.6 billion per year, approximately 18% of gross agricultural economic output.

For the UK on average Annual Milk Loss (AML) due to heat stress is projected to rise from 40 kg/cow to over 170 kg/cow. Based on current yields it is from 0.5% to 1.8% in average years. The most extreme region is the south-east where average AML is projected to rise from 80 kg/cow to over 320 kg/cow. That is from 1% to 4.2% in average years. That is, if UK dairy farmers totally ignore the issue of heat stress for decades the industry could see average revenue losses from heat stress rise on average from £23m to £85m. The financial losses are based on constant prices of £0.30 per litre.

With modeled estimates over very long periods, it is worth checking the assumptions.

Price per liter of milk

The profits are based upon a constant price of £0.30 a liter. But prices can fluctuate according to market conditions. Data on annual average prices paid is available from AHDB Dairy, ” a levy-funded, not-for-profit organisation working on behalf of Britain’s dairy farmers.” Each month, since 2004, there are reported the annual average prices paid by dairies over a certain size available here. That is 35-55 in any one month. I have taken the minimum and maximum prices for reported in June each year and shown in Figure 1.

Even annual average milk prices fluctuate depending on market conditions. If milk production is reduced in summer months due to an unusual heat wave causing heat stress, ceteris paribus, prices will rise. It could be that a short-term reduction in supply would increase average farming profits if prices are not fixed. It is certainly not valid to assume fixed prices over many decades.

Dumb farmers

From the section in the paper “Milk loss estimation methods

It was assumed that temperature and relative humidity were the same for all systems, and that no mitigation practices were implemented. We also assumed that cattle were not significantly different from the current UK breed types, even though breeding for heat stress tolerance is one of the proposed measures to mitigate effects of climate change on dairy farms.

This paper is looking at over 70 years in the future. If heatwaves were increasing, so yields falling and cattle were suffering, is it valid to assume that farmers will ignore the problem? Would they not learn from areas with more extreme heatwaves in summer elsewhere such as in central Europe? After all in the last 70 years (since the late 1940s) breeding has increased milk yields phenomenally (from AHDB data, milk yields per cow have increased 15% from 2001/2 to 2016/7 alone) so a bit of breeding to cope with heatwaves should be a minor issue.

The Conversation article states the implausible assumptions in a concluding point.

These predictions assume that nothing is done to mitigate the problems of heat stress. But there are many parts of the world that are already much hotter than the UK where milk is produced, and much is known about what can be done to protect the welfare of the animals and minimise economic losses from heat stress. These range from simple adaptations, such as the providing shade, to installing fans and water misting systems.

Cattle breeding for increased heat tolerance is another potential, which could be beneficial for maintaining pasture-based systems. In addition, changing the location of farming operations is another practice used to address economic challenges worldwide.

What is not recognized here is that farmers in a competitive market have to adapt in the light of new information to stay in business. That is the authors are telling farmers what they will be fully aware of to the extent that their farms conform to the average. Effectively assuming people and dumb, then telling them obvious, is hardly going to get those people to take on board one’s viewpoints.

Certainty of global warming

The Conversation article states

Using 11 different climate projection models, and 18 different milk production models, we estimated potential milk loss from UK dairy cows as climate conditions change during the 21st century. Given this information, our final climate projection analysis suggests that average ambient temperatures in the UK will increase by up to about 3.5℃ by the end of the century.

This warming is consistent with the IPCC global average warming projections using RCP8.5 non-mitigation policy scenario. There are two alternative, indeed opposite, perspectives that might lead rational decision-makers to think this quantity of warming is less than certain.

First, the mainstream media, where the message being put out is that the Paris Climate Agreement can constrain global warming to 2°C or 1.5°C above the levels of the mid-nineteenth century. With around 1°C of warming already if it is still possible to constrain additional global warming to 0.5°C, why should one assume that 3.5°C of warming for the UK is more than a remote possibility in planning?

Second, one could look at the track record of global warming projections from the climate models. The real global warming scare kicked-off with James Hansen’s testimony to Congress in 1988. Despite actual greenhouse gas emissions being closely aligned with rapid warming, actual global warming has been most closely aligned with the assumption of the impact of GHG emissions being eliminated by 2000. Now, if farming decision-makers want to still believe that emissions are the major driver of global warming, they can find plenty of excuses for the failure linked from here. But, rational decision-makers tend to look at the track record and thus take consistent decision-makers with more than a pinch of salt.

Planning horizons

The Conversation article concludes

(W)e estimate that by 2100, heat stress-related annual income losses of average size dairy farms in the most affected regions may vary between £2,000-£6,000 and £6,000-£14,000 (in today’s value), in average and extreme years respectively. Armed with these figures, farmers need to begin planning for a hotter UK using cheaper, longer-term options such as planting trees or installing shaded areas.

This compares to the current the UK average annual dairy farm business income of £80,000 according to the PLOS One article.

There are two sides to investment decision-making. There are potential benefits – in this case avoidance of profit loss – netted against the potential benefits. ADHB Dairy gives some figures for the average herd size in the UK. In 2017 it averaged 146 cows, almost double the 75 cows in 1996. In South East England, that is potentially £41-£96 a cow, if the average herd size there is same as the UK average. If the costs rose in a linear fashion, that would be around 50p to just over a pound a year per cow in the most extreme affected region. But the PLOS One article states that costs will rise exponentially. That means there will be no business justification for evening considering heat stress for the next few decades.

For that investment to be worthwhile, it would require the annual cost of mitigating heat stress to be less than these amounts. Most crucially, rational decision-makers apply some sort of NPV calculation to investments. This includes a discount rate. If most of the costs are to be incurred decades from now – beyond the working lives of the current generation of farmers – then there is no rational reason to take into account heat stress even if global warming is certain.

Summary

The Paper Spatially explicit estimation of heat stress-related impacts of climate change on the milk production of dairy cows in the United Kingdom makes a number of assumptions to reach its headline conclusion of decreased milk yields due to heat stress by the end of the century. The assumption of constant prices defies the economic reality that prices fluctuate with changing supply. The assumption of dumb farmers defies the reality of a competitive market, where they have to respond to new information to stay in business. The assumption of 3.5°C warming in the UK can be taken as unlikely from either the belief Paris Climate Agreement with constrain further warming to 1°C or less OR that the inability of past climate projections to conform to the pattern of warming should give more than reasonable doubt that current projections are credible.  Further the authors seem to be unaware of the planning horizons of normal businesses. Where there will be no significant costs for decades, applying any sort of discount rate to potential investments will mean instant dismissal of any consideration of heat stress issues at the end of the century by the current generation of farmers.

Taking all these assumptions together makes one realize that it is quite dangerous for specialists in another field to take the long range projections of climate models and apply to their own areas, without also considering the economic and business realities.

Kevin Marshall 

Plan B Environmental Activists deservedly lose High Court battle over Carbon Target

Breaking News

From Belfast Telegraph & itv.com and Science Matters (my bold)

Lawyers for the charity previously argued the Government should have, in light of the current scientific consensus, gone further than its original target of reducing carbon levels by 2050 to 80% of those present in 1990.

They said the decision not to amend the 2050 target put the UK in breach of its international obligations under the Paris Agreement on Climate Change and was influenced by the Government’s belief that a “more ambitious target was not feasible”.

At a hearing on July 4, Jonathan Crow QC told the court: “The Secretary of State’s belief that he needs to have regard to what is feasible, rather than what is necessary, betrays a fundamental misunderstanding of the scheme of the 2008 Act and must be quashed.

“All of the individual claimants are deeply concerned about climate change.”

The barrister argued the Secretary of State’s “continuing refusal” to amend the 2050 target means the UK is playing “Russian roulette with two bullets, instead of one”.

But, refusing permission for a full hearing, Mr Justice Supperstone said Plan B Earth’s arguments were based on an “incorrect interpretation” of the Paris Agreement.

He said: “In my view the Secretary of State was plainly entitled … to refuse to change the 2050 target at the present time.

In a previous post I wrote that

Taking court action to compel Governments to enforce the Paris Climate Agreement is against the real spirit of that Agreement. Controlling global GHG emissions consistent with 2°C, or 1.5°C is only an aspiration, made unachievable by allowing developing countries to decide for themselves when to start reducing their emissions. ……. Governments wanting to both be players on the world stage and serve their countries give the appearance of taking action of controlling emissions, whilst in substance doing very little. This is the real spirit of the Paris Climate Agreement. To take court action to compel a change of policy action in the name of that Agreement should be struck off on that basis.

Now I would not claim Mr Justice Supperstone supports my particular interpretation of the Paris Agreement as an exercise in political maneuvering allowing Governments to appear to be one thing, whilst doing another. But we are both agreed that “Plan B Earth’s arguments were based on an “incorrect interpretation” of the Paris Agreement.

The UNFCCC PDF of the Paris Agreement is here to check. Then check against my previous post, which argues that if the Government acted in the true spirit of the Paris Agreement, it would suspend the costly Climate Change Act 2008 and put efforts into being seen to be doing something about climate change. Why

  • China was praised for joining the emissions party by proposing to stop increasing emissions by 2030.
  • Very few of the INDC emissions will make real large cuts in emissions.
  • The aggregate forecast impact of all the INDC submissions, if fully enacted, will see global  emissions slightly higher than today in 2030, when according to the UNEP emissions GAP report 2017 for 1.5°C warming target they need to be 30% lower in just 12 years time. Paris Agreement Article 4.1 states something that is empirically incompatible with that aim.

In order to achieve the long-term temperature goal set out in Article 2, Parties aim to reach global peaking of greenhouse gas emissions as soon as possible, recognizing that peaking will take longer for developing country Parties,

  • The Paris Agreement allows “developing” countries to keep on increasing their emissions. With about two-thirds of global emissions (and over 80% of the global population), 30% emissions cuts may not be achieved even if all the developed countries cut emissions to zero in 12 years.
  • Nowhere does the Paris Agreement recognize the many countries who rely on fossil fuels for a large part of their national income, for instance in the Middle East and Russia. Cutting emissions to near zero by mid-century would impoverish them within a generation. Yet, with the developing countries also relying on cheap fossil fuels to promote high levels of economic growth for political stability and to meeting the expectations of their people (e.g. Pakistan, Indonesia, India, Turkey) most of the world can carry on for decades whilst some enlightened Governments in the West damage the economic futures of their countries for appearances sake. Activists trying to dictate Government policy through the Courts in a supposedly democratic country ain’t going to change their minds.

Plan B have responded to the judgement. I find this statement interesting.

Tim Crosland, Director of Plan B and former government lawyer, said: ‘We are surprised and disappointed by this ruling and will be lodging an appeal.

‘We consider it clear and widely accepted that the current carbon target is not compatible with the Paris Agreement. Neither the government nor the Committee on Climate Change suggested during our correspondence with them prior to the claim that the target was compatible.

Indeed, it was only in January of this year that the Committee published a report accepting that the Paris Agreement was ‘likely to require’ a more ambitious 2050 target

What I find interesting is that only point that a lawyer has for contradicting Mr Justice Supperstone’s statement that “Plan B Earth’s arguments were based on an “incorrect interpretation” of the Paris Agreement” is with reference to a report by the Committee on Climate Change. From the CCC website

The Committee on Climate Change (the CCC) is an independent, statutory body established under the Climate Change Act 2008.

Our purpose is to advise the UK Government and Devolved Administrations on emissions targets and report to Parliament on progress made in reducing greenhouse gas emissions and preparing for climate change.

The Committee is set up for partisan aims and, from its’s latest report, appears to be quite zealous in fulfilling those aims. Even as a secondary source (to a document which is easy to read) it should be tainted. But, I would suggest that to really understand the aims of the Paris Agreement you need to read the original and put it in the context of the global empirical and political realities. From my experience, the climate enlightened will keep on arguing for ever, and get pretty affronted when anyone tries to confront their blinkered perspectives.

Kevin Marshall

Why Plan B’s Climate Court Action should be dismissed

Summary

Taking court action to compel Governments to enforce the Paris Climate Agreement is against the real spirit of that Agreement. Controlling global GHG emissions consistent with 2°C, or 1.5°C is only an aspiration, made unachievable by allowing developing countries to decide for themselves when to start reducing their emissions. In the foreseeable future, the aggregate impact of emissions reduction policies will fail to even reduce global emissions. Therefore, costly emissions reductions policies will always end up being net harmful to the countries where they are imposed. Governments wanting to both be players on the world stage and serve their countries give the appearance of taking action of controlling emissions, whilst in substance doing very little. This is the real spirit of the Paris Climate Agreement. To take court action to compel a change of policy action in the name of that Agreement should be struck off on that basis. I use activist group Plan B’s case before the British Court to get the British Government to make even deeper emissions cuts than those under the Climate Change Act 2008.

Plan B’s Case at the High court

Last week BBC’s environment analyst Roger Harrabin reported Court action to save young from climate bill.

The campaigners – known collectively as Plan B – argue that if the UK postpones emissions cuts, the next generation will be left to pick up the bill.

It is seeking permission from a judge to launch formal legal action.

The government has promised to review its climate commitments.

A spokesperson said it was committed to tackling emissions.

But Plan B believes ministers may breach the law if they don’t cut emissions deeper – in line with an international agreement made in Paris at the end of 2015 to restrict global temperature rise to as close to 1.5C as possible.

From an obscure website crowdjustice

Plan B claim that the government is discriminating against the young by failing to cut emissions fast enough. During the hearing, they argued that the UK government’s current target of limiting global temperature rises to 2°C was not ambitious enough, and that the target ought to be lowered to 1.5°C, in line with the Paris Agreement that the UK ratified in 2015. Justice Supperstone postponed the decision until a later date.

Plan B on their own website state

Plan B is supporting the growing global movement of climate litigation, holding governments and corporations to account for climate harms, fighting for the future for all people, all animals and all life on earth.

What is the basis of discrimination?

The widely-accepted hypothesis is that unless global greenhouse gas (GHG) emissions are reduced to near zero in little more than a generation, global average temperature rise will rise more than 2°C above pre-industrial levels. A further hypothesis is that this in turn will cause catastrophic climate change. Consequent on both hypotheses being true gives the case for policy action. Therefore, failure to reduce global GHG emissions will imperil the young.

A further conjecture is that if all signatories to the Paris Agreement fulfil their commitments it is sufficient to prevent 1.5°C or 2°C of warming. There are a number of documents to consider.

First is the INDC submissions (i.e. Nation States communications of their intended nationally determined contributions), collected together at the UNFCCC website. Most are in English.  To find a country submission I suggest clicking on the relevant letter of the alphabet.

Second, to prevent my readers being send on a wild goose chase through small country submissions, some perspective is needed on relative magnitude of emissions. A clear secondary source (but only based on CO2 emissions) BP Data Analysis Global CO2 Emissions 1965-2017. More data on GHG emissions are from the EU Commissions EDGAR Emissions data and the World Resources Institute CAIT Climate Data Explorer.

Third is the empirical scale of the policy issue. The UNEP emissions Gap Report 2017 (pdf), published in October last year is the latest attempt to estimate the scale of the policy issue. The key is the diagram reproduced below.

The total of all commitments will still see aggregate emissions rising into the future. That is, the aggregate impact of all the nationally determined contributions is to see emissions rising well into the future. So the response it to somehow persuade Nations States to change their vague commitments to such an extent that aggregate emissions pathways sufficient to prevent 1.5°C or 2°C of warming?

The relevant way to do this ought to be through the Paris Agreement.

Fourth is the Adoption Paris Agreement itself, as held on the UNFCCC website (pdf).

 

Paris Agreement key points

I would draw readers to Article 2.1(a)

  • Holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels, recognizing that this would significantly reduce the risks and impacts of climate change;

Article 2.2

  • This Agreement will be implemented to reflect equity and the principle of common but differentiated responsibilities and respective capabilities, in the light of different national circumstances.

My interpretation is that the cumulative aggregate reduction will be only achieved by if those countries that (in the light of their national circumstances) fail to follow the aggregate pathways, are offset by other countries cutting their emissions by a greater amount. It is a numbers game. It is not just a case of compelling some countries to meet the 1.5°C pathway but to compel them to exceed it by some margin.

I would also draw readers to Article 4.1

In order to achieve the long-term temperature goal set out in Article 2, Parties aim to reach global peaking of greenhouse gas emissions as soon as possible, recognizing that peaking will take longer for developing country Parties, and to undertake rapid reductions thereafter in accordance with best available science, so as to achieve a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century, on the basis of equity, and in the context of sustainable development and efforts to eradicate poverty.

My reading is that any country defined as “developing” has only an aim of reducing emissions after peaking of their emissions. When they choose to do so depends on a number of criteria. There is not clear mechanism for deciding this, and no surrender of decision-making by countries to external bodies.

Implications of the Paris Agreement

Many developing countries emissions are increasing their emissions. They agreement does not compel them to change course in the near future. Empirically that means to achieve the goals the aggregate emission reductions of countries reducing their emissions must be such that they cancel out the emissions increases in the developing countries. Using EDGAR figures for GHG emissions, and the Rio Declaration 1992 for developing countries (called Non-Annex countries) I estimate they accounted for 64% of global GHG emissions in 2012, the latest year available.

 

All other sources sum to 19 GtCO2e, the same as the emissions gap between the unconditional INDC case and the 1.5°C case. This presents a stark picture. Even if emissions from all other sources are eliminated by 2030, AND the developing countries do not increase their emissions to 2030, cumulative global emissions are very likely to exceed the 1.5°C and the 2°C warming targets unless the developing countries reduce their emissions rapidly after 2030. That is close down fairly new fossil fuel power stations; remove from the road millions of cars, lorries and buses; and reduce the aspirations of the emerging middle classes to improving life styles. The reality is quite the opposite. No new policies are on the horizon that would significantly reduce global GHG emissions, either from the developed countries in the next couple of years, or the developing countries to start in just over a decade from now. Reading the comments in the INDC emissions (e.g. Indonesia, Pakistan, India), a major reason is that these governments are not willing to sacrifice the futures of their young through risking economic growth and political stability to cut their emissions. So rather than Plan B take the UK Government  to a UK Court, they should be persuading those Governments who do not share their views (most of them) of the greater importance of their case. After all, unlike proper pollution (such as smoke), it does not matter where the emissions are generated in relation to the people affected.

It gets worse. It could be argued that the countries that most affected by mitigation policies are not the poorest seeing economic growth and political stability smashed. It is the fossil fuel dependent countries. McGlade and Ekins 2015 (The geographical distribution of fossil fuels unused when limiting global warming to 2°C) estimated, said to achieve even 2°C target 75% of proven reserves and 100% of new discoveries must be left in the ground. Using these global estimates and the BP estimated proven reserves of fossil fuels I created the following apportionment by major countries.

 

The United States has the greatest proven fossil fuel reserves in terms of potential emissions. But if one looks at fossil fuel revenues relative to GDP, it is well down the league table. To achieve emission targets countries such like Russia, Saudi Arabia, Kuwait, Turkmenistan, Iraq, and Iran must all be persuaded to shut down their down sales of fossil fuels long before the reserves are exhausted, or markets from developing countries dry up. To do this in a generation would decimate their economies. However, given the increase in fossil fuel usage from developing countries, and the failure of developed countries to significantly reduce emissions through policy this hardly seems a large risk.

However, this misses the point. The spirit of the Paris Agreement is not to cut emissions, but to be seen to be doing something about climate change. For instance, China were held up by the likes of President Obama for aiming to both top out its emissions by 2030, and reduce emissions per unit of GDP. The USA and the EU did this decades ago, so China’s commitments are little more than a Business-as-usual scenario. Many other countries emissions reduction “targets” are attainable without much actual policy. For example, Brazil’s commitment is to “reduce greenhouse gas emissions by 43% below 2005 levels in 2030.” It sounds impressive, until one reads this comment under “Fairness and Ambition

Brazil’s current actions in the global effort against climate change represent one of the largest undertakings by any single country to date, having reduced its emissions by 41% (GWP-100; IPCC SAR) in 2012 in relation to 2005 levels.

Brazil intends to reduce emissions by a further 2% compared to 2005 levels. Very few targets are more than soft targets relative to current or projected trends. Yet the outcome of COP21 Paris enabled headlines throughout the world to proclaim a deal had been reached “to limit global warming to “well below” 2C, aiming for 1.5C”. It enables most Governments to juggle being key players on a world stage, have alarmists congratulating them on doing their bit on saving the planet, whilst making sure that serving the real needs of their countries is not greatly impeded. It is mostly win-win as long as countries do not really believe that targets are achievable. This is where Britain has failed. Under Tony Blair, when the fever of climate alarmism at its height, backed up by the political spin of New Labour and a Conservative opposition wanting to ditch its unelectable image, Green activists wrote the Climate Change Act 2008 with the strict targets to be passed. Britain swallowed climate alarmism whole, and now as a country that keep its promises is implementing useless and costly policies. But they have kept some form of moderation in policies until now. This is illustrated by a graphic from a Committee on Climate Change report last week “Reducing UK emissions 2018 – Progress Report to Parliament” (pdf) (and referenced at cliscep)

Whilst emissions have come down in the power sector they are flat in transport, industry and in buildings. Pushing real and deep reductions in these sectors means for young people pushing up the costs of motoring (placing driving a car out of the reach of many), of industry (raising costs relative to the countries – especially the non-policy developing countries) and buildings in a country where planning laws make home-owning unaffordable for many and where costs of renting is very high. This on top of further savings in the power industry will be ever more costly as the law of diminishing returns sets in. Forcing more urgent policy actions will increase the financial and other burdens on the young people of today, but do virtually nothing to reach the climate aspirations of the Paris Agreement due to Britain now having less than 1% of global emissions. The Government could be forced out of political fudging to impose policies that will be net harmful to the young and future generations.

Plan B are using an extreme activist interpretation. As reported in Climate Home News after the postponement.

“The UK is not doing enough,” Tim Crosland, director of Plan B told Climate Home News. “The benchmark target is now out of place. We are arguing that it is a breach of human rights.”

The UK has committed to cut emissions by at least 80% of 1990 levels by 2050, with an aim to limit global temperature rise to 2C.

Under the 2008 Climate Change Act, the secretary can revise the target to reflect significant developments in climate change science or in international law or policy.

Plan B want to see the target lowered to be in line with 1.5C, the lower target of the Paris Agreement, which the UK ratified in 2016.

As stated, insofar as the Paris Climate Agreement is a major development of policy, it is one of appearing to do a lot whilst doing very little. By these terms, the stronger case is for repealing the Act, not strengthening its clauses. 

But what if I am wrong on this Paris Agreement being just an exercise in appearances? This then it should be recognized that developing countries will only start to reduce their emissions at some time in the future. By implication, for the world to meet the 1.5°C warming limit, developing countries should be pursuing and emissions reduction pathway much steeper than the 25% reduction between 2015 and 2030 implied in the Emissions GAP Report graphic. It should be at least 50% and nearer 100% in the next decade. Given that the Climate Change Act was brought in so that Britain could lead the world on climate change, Plan B should be looking for a 100% reduction by the end of the year. 

Kevin Marshall

 

Changing a binary climate argument into understanding the issues

Last month Geoff Chambers posted “Who’s Binary, Us or Them? Being at cliscep the question was naturally about whether sceptics or alarmists were binary in their thinking. It reminded me about something that went viral on youtube a few year’s ago. Greg Craven’s The Most Terrifying Video You’ll Ever See.

To his credit, Greg Craven in introducing both that human-caused climate change can have a trivial impact recognize that mitigating climate (taking action) is costly. But for the purposes of his decision grid he side-steps these issues to have binary positions on both. The decision is thus based on the belief that the likely consequences (costs) of catastrophic anthropogenic global warming then the likely consequences (costs) of taking action. A more sophisticated statement of this was from a report commissioned in the UK to justify the draconian climate action of the type Greg Craven is advocating. Sir Nicholas (now Lord) Stern’s report of 2006 (In the Executive Summary) had the two concepts of the warming and policy costs separated when it claimed

Using the results from formal economic models, the Review estimates that if we don’t act, the overall costs and risks of climate change will be equivalent to losing at least 5% of global GDP each year, now and forever. If a wider range of risks and impacts is taken into account, the estimates of damage could rise to 20% of GDP or more. In contrast, the costs of action – reducing greenhouse gas emissions to avoid the worst impacts of climate change – can be limited to around 1% of global GDP each year.

Craven has merely simplified the issue and made it more binary. But Stern has the same binary choice. It is a choice between taking costly action, or suffering the much greater possible consequences.  I will look at the policy issue first.

Action on Climate Change

The alleged cause of catastrophic anthropogenic global warming is (CAGW) is human greenhouse gas emissions. It is not just some people’s emissions that must be reduced, but the aggregate emissions of all 7.6 billion people on the planet. Action on climate change (i.e. reducing GHG emissions to near zero) must therefore include all of the countries in which those people live. The UNFCCC, in the run-up to COP21 Paris 2015, invited countries to submit Intended Nationally Determined Contributions (INDCs). Most did so before COP21, and as at June 2018, 165 INDCs have been submitted, representing 192 countries and 96.4% of global emissions. The UNFCCC has made them available to read. So these intentions will be sufficient “action” to remove the risk of CAGW? Prior to COP21, the UNFCCC produced a Synthesis report on the aggregate effect of INDCs. (The link no longer works, but the main document is here.) They produced a graphic that I have shown on multiple occasions of the gap between policy intentions on the desired policy goals. A more recent graphic is from the UNEP Emissions Gap Report 2017, published last October and

Figure 3 : Emissions GAP estimates from the UNEP Emissions GAP Report 2017

In either policy scenario, emissions are likely to be slightly higher in 2030 than now and increasing, whilst the policy objective is for emissions to be substantially lower than today and and decreasing rapidly. Even with policy proposals fully implemented global emissions will be at least 25% more, and possibly greater than 50%, above the desired policy objectives. Thus, even if proposed policies achieve their objective, in Greg Craven’s terms we are left with pretty much all the possible risks of CAGW, whilst incurring some costs. But the “we” is for 7.6 billion people in nearly 200 countries. But the real costs are being incurred by very few countries. For the United Kingdom, with the Climate Change Act 2018 is placing huge costs on the British people, but future generations of Britain’s will achieve very little or zero benefits.

Most people in the world live in poorer countries that will do nothing significant to constrain emissions growth if it that conflicts with economic growth or other more immediate policy objectives. In terms of the some of the most populous developing countries, it is quite clear that achieving the policy objectives will leave emissions considerably higher than today. For instance, China‘s main aims of peaking CO2 emissions around 2030 and lowering carbon emissions per unit of GDP in 2030 by 60-65% compared to 2005 by 2020 could be achieved with emissions in 2030 20-50% higher than in 2017. India has a lesser but similar target of reducing emissions per unit of GDP in 2030 by 30-35% compared to 2005 by 2020. If the ambitious economic growth targets are achieve, emissions could double in 15 years, and still be increasing past the middle of the century. Emissions in Bangladesh and Pakistan could both more than double by 2030, and continue increasing for decades after.

Within these four countries are over 40% of the global population. Many other countries are also likely to have emissions increasing for decades to come, particularly in Asia and Africa. Yet without them changing course global emissions will not fall.

There is another group of countries that are have vested interests in obstructing emission reduction policies. That is those who are major suppliers of fossil fuels. In a letter to Nature in 2015, McGlade and Ekins (The geographical distribution of fossil fuels unused when limiting global warming to 2°C) estimate that the proven global reserves of oil, gas and coal would produce about 2900 GtCO2e. They further estimate that the “non-reserve resources” of fossil fuels represent a further 8000 GtCO2e of emissions. The estimated that to constrain warming to 2C, 75% of proven reserves, and any future proven reserves would need to be left in the ground. Using figures from the BP Statistical Review of World Energy 2016 I produced a rough split by major country.

Figure 4 : Fossil fuel Reserves by country, expressed in terms of potential CO2 Emissions

Activists point to the reserves in the rich countries having to be left in the ground. But in the USA, Australia, Canada and Germany production of fossil fuels is not a major part of the economy. Ceasing production would be harmful but not devastating. One major comparison is between the USA and Russia. Gas and crude oil production are similar volumes in both countries. But, the nominal GDP of the US is more than ten times that of Russia. The production of both countries in 2016 was about 550 million tonnes or 3900 million barrels. At $70 a barrel that is around $275bn, equivalent to 1.3% of America’s GDP and 16% of Russia’s. In gas, prices vary, being very low in the highly competitive USA, and highly variable for Russian supply, with major supplier Gazprom acting as a discriminating monopolist. But America’s revenue is likely to be less than 1% of GDP and Russia’s equivalent to 10-15%. There is even greater dependency in the countries of the Middle East. In terms of achieve emissions targets, what is trying to be achieved is the elimination of the major source of the countries economic prosperity in a generation, with year-on-year contractions in fossil fuel sales volumes.

I propose that there are two distinct groups of countries that appear to have a lot lose from a global contraction in GHG emissions to near zero. There are the developing countries who would have to reduce long-term economic growth and the major fossil fuel-dependent countries, who would lose the very foundation of their economic output in a generation. From the evidence of the INDC submissions, there is now no possibility of these countries being convinced to embrace major economic self-harm in the time scales required. The emissions targets are not going to be met. The emissions gap will not be closed to any appreciable degree.

This leaves Greg Craven’s binary decision option of taking action, or not, as irrelevant. As taking action by a country will not eliminate the risk of CAGW, pursuing aggressive climate mitigation policies will impose net harms wherever they implemented. Further, it is not the climate activists who are making the decisions, but policy-makers countries themselves. If the activists believe that others should follow another path, it is them that must make the case. To win over the policy-makers they should have sought to understand their perspectives of those countries, then persuade them to accept their more enlightened outlook. The INDCs show that the climate activists gave failed in this mission. Until such time, when activists talk about the what “we” are doing to change the climate, or what “we” ought to be doing, they are not speaking about

But the activists have won over the United Nations, those who work for many Governments and they dominate academia. For most countries, this puts political leaders in a quandary. To maintain good diplomatic relations with other countries, and to appear as movers on a world stage they create the appearance of taking significant action on climate change for the outside world. On the other hand they are serving their countries through minimizing the real harms that imposing the policies would create. Any “realities” of climate change have become largely irrelevant to climate mitigation policies.

The Risks of Climate Apocalypse

Greg Craven recognized a major issue with his original video. In the shouting match over global warming who should you believe? In How it all Ends (which was followed up by further videos and a book) Craven believes he has the answer.

Figure 5 : Greg Craven’s “How it all Ends”

It was pointed out that the logic behind the grid is bogus. As in Devil’s advocate guise Craven says at 3:50

Wouldn’t that grid argue for action against any possible threat, no matter how costly the action or how ridiculous the threat? Even giant mutant space hamsters? It is better to go broke building a load of rodent traps than risk the possibility of being hamster chow. So this grid is useless.

His answer is to get a sense of how likely the possibility of global warming being TRUE or FALSE is. Given that science is always uncertain, and there are divided opinions.

The trick is not to look at what individual scientists are saying, but instead to look at what the professional organisations are saying. The more prestigious they are, the more weight you can give their statements, because they have got huge reputations to uphold and they don’t want to say something that later makes them look foolish. 

Craven points to the “two most respected in the world“. The National Academy of Sciences (NAS) and the American Association for the Advancement of Science (AAAS). Back in 2007 they had “both issued big statements calling for action, now, on global warming“.  The crucial question from scientists (that is people will a demonstrable expert understanding of the natural world) is not for political advocacy, but whether their statements say their is a risk of climate apocalypse. These two bodies still have statements on climate change.

National Academy of Sciences (NAS) says

There are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. The US National Academy of Sciences and The Royal Society produced a booklet, Climate Change: Evidence and Causes (download here), intended to be a brief, readable reference document for decision makers, policy makers, educators, and other individuals seeking authoritative information on the some of the questions that continue to be asked. The booklet discusses the evidence that the concentrations of greenhouse gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to emissions of greenhouse gases caused by human activities.

Further climate change is inevitable; if emissions of greenhouse gases continue unabated, future changes will substantially exceed those that have occurred so far. There remains a range of estimates of the magnitude and regional expression of future change, but increases in the extremes of climate that can adversely affect natural ecosystems and human activities and infrastructure are expected.

Note, this is conjunction with the Royal Society, which is arguably is (or was) the most prestigious  scientific organisation of them all. It is what not said that is as important as what is actually said. They are saying that there is a an expectation that extremes of climate could get worse. There is nothing that solely backs up the climate apocalypse, but a range of possibilities, including changes somewhat trivial on a global scale. The statement endorses a spectrum of possible positions that undermines the binary TRUE /FALSE position on decision-making.

The RS/NAS booklet has no estimates of the scale of possible climate catastrophism to be avoided. Point 19 is the closest.

Are disaster scenarios about tipping points like ‘turning off the Gulf Stream’ and release of methane from the Arctic a cause for concern?

The summary answer is

Such high-risk changes are considered unlikely in this century, but are by definition hard to predict. Scientists are therefore continuing to study the possibility of such tipping points beyond which we risk large and abrupt changes.

This appears not to support Stern’s contention that unmitigated climate change will costs at least 5% of global GDP by 2100. Another context of the back-tracking on potential catastrophism is to to compare with  Lenton et al 2008 – Tipping elements in the Earth’s climate system. Below is a map showing the the various elements considered.

Figure 6 : Fig 1 of Lenton et al 2008, with explanatory note.

Of the 14 possible tipping elements discussed, only one makes it into the booklet six years later. Surely if the other 13 were still credible more would have been included in booklet, and less on documenting trivial historical changes.

American Association for the Advancement of Science (AAAS) has a video

Figure 7 : AAAS “What We Know – Consensus Sense” video

 

It starts with the 97% Consensus claims. After asking the listener on how many,  Marshall Sheppard, Prof of Geography at Univ of Georgia states.

The reality is that 97% of scientists are pretty darn certain that humans are contributing to the climate change that we are seeing right now and we better do something about it to soon.

There are two key papers that claimed a 97% consensus. Doran and Zimmerman 2009 asked two questions,

1. When compared with pre-1800s levels, do you think that mean global temperatures have generally risen, fallen, or remained relatively constant?

2. Do you think human activity is a significant contributing factor in changing mean global temperatures?

The second of these two responses was answered in the affirmative by 77 of 79 climate scientists. This was reduced from 3146 responses received. Read the original to find out why it was reduced.

Dave Burton has links to a number of sources on these studies. A relevant quote on Doran and Zimmerman is from the late Bob Carter

Both the questions that you report from Doran’s study are (scientifically) meaningless because they ask what people “think”. Science is not about opinion but about factual or experimental testing of hypotheses – in this case the hypothesis that dangerous global warming is caused by human carbon dioxide emissions.

The abstract to Cook et al. 2013 begins

We analyze the evolution of the scientific consensus on anthropogenic global warming (AGW) in the peer-reviewed scientific literature, examining 11 944 climate abstracts from 1991–2011 matching the topics ‘global climate change’ or ‘global warming’. We find that 66.4% of abstracts expressed no position on AGW, 32.6% endorsed AGW, 0.7% rejected AGW and 0.3% were uncertain about the cause of global warming. Among abstracts expressing a position on AGW, 97.1% endorsed the consensus position that humans are causing global warming. 

Expressing a position does not mean a belief. It could be an assumption. The papers were not necessarily by scientists, but merely authors of academic papers that involved the topics ‘global climate change’ or ‘global warming’. Jose Duarte listed some of the papers that were included in the survey, along with looking at some that were left out.

Neither paper asked a question concerning belief in future climate catastrophism. Sheppard does not make clear the scale of climate change trends from the norm, so the human-caused element could be insignificant. The 97% consensus does not include the policy claims.

The booklet is also misleading as well in the scale of changes. For instance on sea-level rise it states.

Over the past two decades, sea levels have risen almost twice as fast as the average during the twentieth century.

You will get that if you compare the tide gauge data with the two decades of satellite data. The question is whether those two sets of data are accurate. As individual tide gauges do not tend to show acceleration, and others cannot find statistically significant acceleration, the claim seems not to be supported.

At around 4.15 in the consensus video AAAS CEO Alan I. Leshner says

America’s leaders should stop debating the reality of climate change and start deciding the best solutions. Our What we Know report makes clear that climate change threatens us at every level. We can reduce the risk of global warming to protect out people, businesses and communities from harm. At every level from our personal and community health, our economy and our future as a global leader.  Understanding and managing climate change risks is an urgent problem. 

The statement is about combating the potential risks from CAGW. The global part of global warming is significant for policy. The United States share of global emissions is around 13% of global emissions. That share has been falling as America’s emissions have been falling why the global aggregate emissions have been rising. The INDC submission for the United States aimed as getting US emissions in 2025 at 26-28% of 2005 levels, with a large part of that reduction already “achieved” when the report was published. The actual policy difference is likely to be less than 1% of global emissions. So any reduction in risks with respect to climate change seems to be tenuous. A consensus of the best scientific minds should have been able to work this out for themselves.

The NAAS does not give a collective expert opinion on climate catastrophism. This is shown by the inability to distinguish between banal opinions and empirical evidence for a big problem. This is carried over into policy advocacy, where they fail to distinguish between the United States and the world as a whole.

Conclusions

Greg Laden’s decision-making grid is inapplicable to real world decision-making. The decision whether to take action or not is not a unitary one, but needs to be taken at country level. Different countries will have different perspectives on the importance of taking action on climate change relative to other issues. In the real world, the proposals for action are available. In aggregate they will not “solve” the potential risk of climate apocalypse. Whatever the actual scale of CAGW, countries who pursue expensive climate mitigation policies are likely to make their own people worse off than if they did nothing at all.

Laden’s grid assumes that the costs of the climate apocalypse are potentially far greater than the costs of action, no matter how huge. He tries to cut through the arguments by getting the opinions from the leading scientific societies. To put it mildly, they do not currently provide strong scientific evidence for a potentially catastrophic problem. The NAS / Royal Society suggest a range of possible climate change outcomes, with only vague evidence for potentially catastrophic scenarios. It does not seem to back the huge potential costs of unmitigated climate change in the Stern Review. The NAAAS seems to provide vague banal opinions to support political advocacy rather than rigorous analysis based on empirical evidence that one would expect from the scientific community.

It would appear that the binary thinking on both the “science” and on “policy” leads to a dead end, and is leading to net harmful public policy.

What are the alternatives to binary thinking on climate change?

My purpose in looking at Greg Laden’s decision grid is not to destroy an alternative perspective, but to understand where the flaws are for better alternatives. As a former, slightly manic, beancounter, I would (like the Stern Review  and William Nordhaus) look at translating potential CAGW into costs. But then weight it according to a discount rate, and the strength of the evidence. In terms of policy I would similarly look at the likely expected costs of the implemented policies, against the actual expected harms foregone. As I have tried to lay out above, the costs of policy and indeed the potential costs of climate change are largely subjective. Further, those implementing policies might be boxed in by other priorities and various interest groups jostling for position.

But what of the expert scientist who can see the impending on-coming catastrophes to which I am blind and to which climate mitigation will be useless? It is to endeavor to pin down the where, when, type and magnitude of potential changes to climate. With this information ordinary people can adjust their plans. The challenge for those who believe there are real problems is to focus on the data from the natural world and away from inbuilt biases of the climate community. But the most difficult part is from such methods they may lose their beliefs, status and friends.

First is to obtain some perspective. In terms of the science, it is worth looking at the broad range of  different perspectives on the Philosophy of Science. The Stanford Encyclopedia of Philosophy article on the subject is long, but very up to date. In the conclusions, the references to Paul Hoyningen-Huene’s views on what sets science apart seems to be a way out of consensus studies.

Second, is to develop strategies to move away from partisan positions with simple principles, or contrasts, that other areas use. In Fundamentals that Climate Science Ignores I list some of these.

Third, in terms of policy, it is worthwhile having a theoretical framework in which to analyze the problems. After looking at Greg Craven’s video’s in 2010, I developed a graphical analysis that will be familiar to people who have studied Marshallian Supply and Demand curves of Hicksian IS-LM. It is very rough at the edges, but armed with it you will not fall in the trap of thinking like the AAAS that US policy will stop US-based climate change.

Fourth, is to look from other perspectives. Appreciate that other people might have other perspectives that you can learn from. Or alternatively they may have entrenched positions which, although you might disagree with, are powerless to overturn. It should then be possible to orientate yourself, whether as an individual or as part of a group, towards aims that are achievable.

Kevin Marshall

Charles Moore nearly gets Climate Change Politics post Paris Agreement

Charles Moore of the Telegraph has long been one of the towering figures of the mainstream media. In Donald Trump has the courage and wit to look at ‘green’ hysteria and say: no deal (see also at GWPF, Notalotofpeopleknowthat and Tallbloke) he understands not only the impact of Trump withdrawing from the climate agreement on future global emissions, but recognizes that two other major developed countries – Germany and Japan – whilst committed to reduce their emissions and spending lots of money on renewables are also investing heavily in coal. So without climate policy, the United States is reducing its emissions, but with climate commitments, emissions in Japan and Germany are increasing their emissions. However, there is one slight inaccuracy in Charles Moore’s account. He states

As for “Paris”, this is failing, chiefly for the reason that poorer countries won’t decarbonise unless richer ones pay them stupendous sums.

It is worse than this. Many of the poorer countries have not said they will decarbonize. Rather they have said that they will use the money to reduce emissions relative to a business as usual scenario.

Take Pakistan’s INDC. In 2015 they estimate emissions were 405 MtCO2e, up from 182 in 1994. As a result of ambitious planned economic growth, they forecast a BAU of 1603 MtCO2e in 2030. However, they can reduce that by 20% with about $40 billion in finance. That is, with $40bn, average annual emissions growth from 2015-2030 will still be twice that of 1994-2015. Plus Pakistan would like $7-$14bn pa for adaptation to climate change. The INDC Table 7 summarizes the figures.

Or Bangladesh’s INDC. Estimated BAU increase in emissions from 2011 to 2030 is 264%. They will unconditionally cut this by 5% and conditionally by a further 15%. The BAU is 7.75% annual emissions growth, cut to 7.5% unconditionally and 6% with lots of finance. The INDC Table 7 summarizes the figures.

I do not blame either country for taking such an approach, or the many others adopting similar strategies. They are basically saying that they will do nothing that impedes trying to raise living standards through high levels of sustained economic growth. They will play the climate change game, so long as nobody demands that Governments compromise on serving the best interests of their peoples. If only the Government’s of the so-called developed nations would play similar games, rather than impose useless burdens on the people they are supposed to be serving.

There is another category of countries that will not undertake to reduce their emissions – the OPEC members. Saudi Arabia, Iran, Venezuela, Kuwait, UAE and Qatar have all made submissions. Only Iran gives a figure. It will unilaterally cut emissions by 4% against BAU. With the removal of “unjust sanctions” and some financial assistance and technology transfer it conditional offer would be much more. But nowhere is the BAU scenario stated in figures. The reason these OPEC countries will not play ball is quite obvious. To achieve the IPCC objective of constraining warming to 2°C according to McGlade and Ekins 2015 (The geographical distribution of fossil fuels unused when limiting global warming to 2°C) would mean leaving 75% of proven reserves of fossil fuels in the ground and all of the unproven reserves. I did an approximate breakdown by major countries last year, using the BP Statistical Review of World Energy 2016.

It does not take a genius to work out that meeting the 2°C climate mitigation target would shut down a major part of the economies of fossil fuel producing countries in about two decades. No-one has proposed either compensating them, or finding alternatives.

But the climate alarmist community are too caught up in their Groupthink to notice the obvious huge harms that implementing global climate mitigation policies would entail.

Kevin Marshall

Macron calls for Climate Tariffs against most of the World

From the Independent (via Eric Worrall at WUWT)

In his speech, Mr Macron also called for an EU tariff on goods imported from countries or companies that do not share its climate goals, and pledged to work to raise the cost of carbon within the EU to €30 a tonne.

The EU INDC submission to COP21 Paris states

The EU and its Member States are committed to a binding target of an at
least 40% domestic reduction in greenhouse gas emissions by 2030
compared to 1990,

Most INDC submissions do not state they will reduce their greenhouse gas emissions. As a result, even if the proposals are fully met (and the EU is unlikely to meet its target) then emissions are forecast to be higher in 2030 than they are today. This graphic from the UNEP Emissions Gap Report published at the end of October demonstrates the situation quite nicely.

So President Macron is wanting sanctions not just against the USA, but most of the world as well? This includes China, India, nearly every African country,  most countries in SE Asia, the Middle East nations and some other nations besides. Or is it just those who stand up to the useless European climate policies, that are benefiting large businesses with subsidies financed disproportionately by the poor? The rhetoric includes “companies”, on whom sanctions cannot be applied. Further, the €30 carbon price is equivalent to €0.10 on the price of petrol (gasoline). How is a small rise in the cost of fossil fuel energy from a group of countries with less than 10% of GHG emissions going to save the world? As economics Professor Richard Tol has estimated, to achieve the targets would require a global carbon tax from 2020 of $210 and then escalated by 4-6% a year until fossil fuels were unaffordable. Chancellor Angela Merkel claims “Climate change is by far the most significant struggle of our time.” (Independent again). The falsity of this claim is shown by political newcomer President Macron’s trying to marginalize and silence opponents with empty and ineffectual threats.

Climate Necessity Defense for Minnesotan Valve Turners

Unlike the Michael Foster and other co-defendants is North Dakota, the Minnesotan Valve-Turners Emily Johnston and Annette Klapstein get their chance to present the Climate Necessity Defense. From TownHall.com (Hat tip Science Matters)

Klapstein, a retired lawyer, said they know of one case in which a judge allowed evidence about climate change but then told the jury to disregard it.

“It looks like we’re going to be able to bring in all our experts and present our evidence of how dire climate change is, so we’re pretty excited about that,” she said.

As a retired attorney, she perhaps should have read the criteria before responding.

In an order Friday, Clearwater County District Judge Robert Tiffany said the four defendants must clear a high legal bar.

In Minnesota, Tiffany wrote, a defendant asserting a necessity defense “must show that the harm that would have resulted from obeying the law would have significantly exceeded the harm actually caused by breaking the law, there was no legal alternative to breaking the law, the defendant was in danger of imminent physical harm, and there was a direct causal connection between breaking the law and preventing the harm.

The judge said it applies “only in emergency situations where the peril is instant, overwhelming, and leaves no alternative but the conduct in question.

This appears fairly clear. The Judge lays down four criteria to be met within an overriding one of emergency situations with no alternative. It is the legal equivalent of demanding that the positive impacts of an action greatly exceed the harms in very specific, very short-term, circumstances. Further, it is up to the defense to demonstrate that the circumstances apply, convincing the court in the face of cross-examinations.

There are a number of areas where I believe climate activists actions not only fails to meet these criteria, but does not even get anywhere close.

The timing issue

The emergency situations criteria are pretty immediate. An example is a police officer shooting dead a rampaging terrorist rather than maiming and performing an arrest. Another example might be destroying the car keys of someone who is drunk and intent on driving. The very short time scales of seconds or minutes exclude options that would take months or years to implement.  There are examples of where such an emergency situation does not apply to climate change policies.

If prominent climate activist Prince Charles was correct in saying in October 2009 that we have less than 100 months to save the planet, it would not have been considered an instant peril. With three months to go until the deadline, even that appears to be somewhat alarmist in the context of a lack of increase of signals of impending catastrophic consequences.

Another source is from the pinnacle of the climate establishment. The IPCC AR5 Synthesis Report gave a very rough guide to how much CO2 (or equivalent greenhouse gases) could be emitted to limit warming to less than 2°C. From 2012 it was about 1000 GtCO2e. This flowing is part of a presentation to summarize the IPCC AR5 Synthesis Report of 2014. Slide 33 of 35.

A more recent source is Miller et al 2017 Nature GeoScience. They estimate that 240 GtC (880 GtCO2e) from now will be needed to reach 1.5°C of warming. On the IPCC’s estimate then with slightly over 50GtCO2e of emissions per annum, the 2°C of warming would be reached sometime before 2032, when the climate experts are now saying the lower 1.5°C barrier will be reached sometime before 2035. Whichever you use as the barrier for breaching of dangerous climate change, that level will not be reached anytime soon according to the climate experts. There is plenty of time for a few more, tense, annual meetings with representatives of 195 nations to pontificate about mitigation policies.

So even if extreme climate alarmism is true, the expert opinion on policy strongly implies that the defendants were not “in danger of imminent physical harm”.

Finally, in 2008 the climate necessity defense was supported by James Hansen in a couple of British court cases. The detailed document prepared as written testimony for the Ratcliffe Nottingham trial is here and a 2011 commentary on the two cases by Hansen is here. As the supposed emergency in global emissions have not appeared in eight years between the testimony and the felony why should it be still considered a pressing problem? James Hansen, sometimes referred to as the Father of Climate Change after his 1988 Congressional Testimony pushed Global Warming to the fore of the political agenda, is likely to be the key witness in the necessity defence. He would have been the key witness at the trial of Micheal Foster in North Dakota last month if the necessity defense had been allowed. After the Foster Trial, Hansen wrote a long article, including arguments that will likely be presented at the Johnston and Klapstein Trail.

Indivisibility Issues

Many people in the United States believe that abortion is murder. Suppose a group managed to close down a busy abortion clinic by constant blockades and intimidation, throwing a number of people of work. An argument could be made that some of the women will not get abortions elsewhere, but will instead give birth to a child. The necessity defense criteria could, therefore, be operable. But with respect to global warming the evidence shows (and the science agrees) that it does not matter where in the world fossil fuels are burnt, the generated CO2 will be dispersed affecting the whole atmosphere. Otherwise, Eastern USA and Eastern China would have much higher concentrations of CO2 than in Africa, Antarctica or over the oceans that cover 70% of the earth’s surface.  Neither does that CO2 leave the atmosphere quickly but could remain in the atmosphere for many decades or even centuries. Therefore, the marginal impact delaying the transportation of one type of fossil fuel in one country for a few hours will have no significant impact on generations of people yet to come. As a rough estimate, the combined actions of the valve-turners (of which Micheal Foster on the Keystone Pipeline was by far the biggest contribution), was to delay the transportation of less than a million barrels of oil. That is to delay the transportation of around 1% of the daily global output of about 92 million barrels. A million barrels (140,000 tonnes) will produce around 400,000 tonnes of CO2. That is 0.4 million tonnes or 0.0004 billion tonnes. This 0.0004 GtCO2 is 0.00004% of the 1000 GtCO2e (million million) of emissions by the IPCC to breach the dangerous 2°C of warming barrier. The impact of Valve-Turners Emily Johnston and Annette Klapstein is somewhat less than this. The difference between “the harm that would have resulted from obeying the law” and “the harm actually caused by breaking the law” is infinitesimally small.

Local Harms, Wider Benefits

There is another set of harms to be considered.  That is the immediate costs of property damage and business disruption from the activists’ actions, along with the time and expense of law enforcement. Even if the action could be shown to have benefits exceeding the costs, for the actual persons or entities targeted that position will be reversed. So, hypothetically, if the benefits of stopping a few hundred thousand tonnes of emissions are even $100,000,000, and the immediate costs are just $1,000,000, the benefits are across the planet decades or centuries in the future and shared by tens of billions of people, whilst the costs are immediate and disproportionately borne by very few victims that the activists select. In reality, the benefits are likely far less, and the full costs somewhat more.

The catalyst effect of the action

As this was an act of climate activism, there was probably no intention that this act would stop climate change. Rather, that the act could serve as a catalyst for action to constrain emissions. It could serve as a wake-up call to policy-makers. A year later it is possible to see any impacts.

In the United States, less than a month after the valve turners did their deeds Donald Trump was elected President and subsequently has begun to rescind climate change policies. There appears to have been no impact on the Presidential elections. If it had, then criminal acts would have influenced the election, something that would have undermined the democratic process.

Another justification could be one of a catalyst for many more criminal actions. Again, there seems to be no surge in climate activism, whether through legal or illegal means does not seem to have happened. Further, lawyers might caution against using the catalyst argument in court to defend criminal acts.

So the catalyst defense (which may not be admissible under Judge Tiffany’s criteria) doesn’t seem to have worked out.

Non-exhaustion of legal policy initiatives

Judge Tiffany’s final specification was

leaves no alternative but the conduct in question.

Was there no alternative? There are two basic criteria necessary, but not sufficient, for the necessity defense to justify an otherwise illegal activity. First, that legal alternatives have been exhausted and second, that the illegal alternative has at least an expectation of being remotely effective. As already stated, the consensus believes that to prevent catastrophic climate change means permanently eliminating global greenhouse gas emissions. With respect to the burning of fossil fuels (about two-thirds of global GHG emissions), this is on the twin fronts of reducing global emissions to near zero and ensuring permanently leaving fossil fuels in the ground.

Possibilities for closing the policy gap

The global efforts to reduce global GHG emissions culminated in the Paris Agreement, written at the end of December 2015 and signed by most countries. The Adoption of the Paris Agreement proposal; Section II, Point 17 notes gives an indication of the gap between the aggregate impact of all the vague policy initiatives and the desired policy goal.

17. Notes with concern that the estimated aggregate greenhouse gas emission levels in 2025 and 2030 resulting from the intended nationally determined contributions do not fall within least-cost 2˚C scenarios but rather lead to a projected level of 55 gigatonnes in 2030, and also notes that much greater emission reduction efforts will be required than those associated with the intended nationally determined contributions in order to hold the increase in the global average temperature to below 2˚C above pre-industrial levels by reducing emissions to 40 gigatonnes or to 1.5˚C above pre-industrial levels by reducing to a level to be identified in the special report referred to in paragraph 21 below;

In a post last month I adapted a graphic produced by the UNFCCC in the run-up to Paris COP21 to show the gap between actual policy proposals and the Millar et al 2017 estimates to prevent 1.5˚C of warming being breached.

The aggregate impact of all policy ambitions if fully implemented fall a long way short of the targets. The majority is not due to the United States, or other Western Countries, failing to reduce emissions at a fast enough rate, but the developing countries increasing their emissions, rather than cutting emissions. When compared with  protests against President Trump’s policies (in a country with less than one-eighth of global emissions and a falling share of the total) there are no mass protests outside the embassies of Asian, Middle Eastern, African or South American countries, with over 80% if the global population and which collectively account for 100% of the growth in emissions between 1990 and 2012. Yet these countries have no expressed intention of reducing their emissions commensurate with the policy pathways. Criminal acts in the USA will do nothing to change this.

Leaving Fossil Fuels in the Ground

Arguments for targeting the output of Canadian tar sands include

(a) per unit of energy, it creates higher emissions than oil from say, Saudi Arabia.

(b) there are vast unproven reserves of oil in Canada that may exceed the current global proven reserves.

These aspects I will deal with in depth in a follow-up post. However, the two statements above are true. There are, however, wider policy aspects. Shutting down some of the global production of oil (and raising the price of oil) could increase the usage of coal instead. Push the price high enough and there will generate economic incentives to convert coal to liquids, a process that involves the generation of a number of times the CO2 emissions as from generating energy direct from oil alone.

The wider aspect is whether shutting down some proven reserves make available much less than the 1000 GtCO2e of emissions that would supposedly cause dangerous climate change. McGlade and Ekins 2015 (The geographical distribution of fossil fuels unused when limiting global warming to 2°C) estimate that the proven global reserves around 2900 GtCO2e. There is no clear breakdown by country, so I input their values of CO2 per unit into the BP’s estimates of global reserves of oil, gas and coal, coming up with a similar 2800 GtCO2e. These represent roughly 50 years of oil and gas supply and 120 years of coal supply at current usage rates. Taking into account other GHG emissions, to achieve the emissions target around 75% of proven reserves and 100% of any future discoveries must be left in the ground. I have produced a chart of the countries where these proven resources lie, measured in terms of CO2 produced from burning for energy.

McGlade and Ekins further estimate there are unproven but likely reserves of oil, gas and coal represent a further 8000 GtCO2e of emissions. Shutting down the Tar Sands permanently will not stop production of fossil fuels elsewhere in the world, particularly in the Middle East, Russia and other Asian countries.

Conclusion

There are a number of reasons that on their own ought to fail the necessity defense criteria laid down by Clearwater County District Judge Robert Tiffany last month. 

First, the climate experts at the UNIPCC, and the policy-promotors at the UNFCCC do not believe there is an imminent emergency. They estimate the threshold to dangerous climate change will not be crossed for over a decade.

Second, the cause of dangerous climate change is meant to the rise in global greenhouse levels, caused by global human greenhouse gas emissions. Shutting down fossil fuel emissions will not stop the harms in that area.

Third, the harms inflicted on the victims of the action are local, whereas any benefits in reduced emissions are global. But there is no evidence of the activists realizing this by campaigning for policy changes in other countries on anything like the level in the USA. The activist’s actions single out a particular source and are thus discriminatory.

Fourth, although the various actions on the same day stopped a vast amount of oil being moved, it was tiny in relation to oil the fossil being produced. Further, oil is only a minority source of all global greenhouse gas emissions.

Fifth, there is a large recognized global policy gap between forecast emissions if current policy proposals are fully enacted and the desired emissions pathways commensurate with 1.5°C or 2°C of warming. To meet these global pathways all countries must participate, but the evidence is that countries with over 80% of the global population have no expressed intention to get anywhere close to these policy criteria. Further, meeting the policy criteria would mean that the vast majority of proven reserves of fossil fuels are left in the group, along with any unproven reserves. Given the geographical dispersion of the proven reserves, this is not going to happen.

The principal theme that undermines the climate necessity defense is that the marginal impact of the action of shutting down a pipeline (or even a number of pipelines) is infinitesimally small compared to the required solution. For this reason, the necessity defense is still not valid even if (contrary to all the research to date) it can be proved beyond reasonable doubt that catastrophic climate changes will happen without rapid reductions in global emissions.

Kevin Marshall

 

The Policy Gap in Achieving the Emissions Goals

The Millar et al. 2017 has severe problems with the numbers, as my previous post suggested. But there is a more fundamental problem in achieving emissions goals. It is contained in the introductory paragraphs to an article lead author Richard Millar posted at Carbon Brief

The Paris Agreement set a long-term goal of limiting global warming to “well-below” 2C above pre-industrial levels and to pursue efforts to restrict it to 1.5C.

A key question for the upcoming rounds of the international climate negotiations, particularly when countries review their climate commitments next year, is exactly how fast would we have to cut emissions to reach these goals?

In a new paper, published in Nature Geoscience, we provide updated estimates of the remaining “carbon budget” for 1.5C. This is the total amount of CO2 emissions that we can still emit whilst limiting global average warming to 1.5C.

Our estimates suggest that we would have a remaining carbon budget equivalent to around 20 years at current emissions rates for a 2-in-3 chance of restricting end-of-century warming to below 1.5C.

This suggests that we have a little more breathing space than previously thought to achieve the 1.5C limit. However, although 1.5C is not yet a geophysical impossibility, it remains a very difficult policy challenge.

The problem is with the mixing of singular and plural statements. The third paragraph shows the problem.

In a new paper, published in Nature Geoscience, we provide updated estimates of the remaining “carbon budget” for 1.5C. This is the total amount of CO2 emissions that we can still emit whilst limiting global average warming to 1.5C.

In the first sentence, the collective “we” refers to the ten authors of the paper. That is Richard J. Millar, Jan S. Fuglestvedt, Pierre Friedlingstein, Joeri Rogelj, Michael J. Grubb, H. Damon Matthews, Ragnhild B. Skeie, Piers M. Forster, David J. Frame & Myles R. Allen.  In the second sentence, the collective “we” refers to approximately 7500 million people on the planet, who live about 195 countries. Do they speak for all the people in Russia, India, Nigeria, Iran, Iraq, China, Taiwan, North and South Korea, the United States and Australia for instance? What I would suggest is they are speaking figuratively about what they believe the world ought to be doing.

Yet the political realities are that even though most countries have signed the Paris Agreement, it does not commit them to a particular emissions pathway, nor to eliminate their emissions by a particular date. It only commits them to produce further INDC submissions every five years, along with attending meetings and making the right noises. Their INDC submissions are not scrutinized, still less sent back for “improved ambition” if they are inadequate in contributing to the aggregate global plan.

Looking at the substance of the Adoption proposal of the Paris Agreement, section II, point 17 notes gives an indication of the policy gap.

17. Notes with concern that the estimated aggregate greenhouse gas emission levels in 2025 and 2030 resulting from the intended nationally determined contributions do not fall within least-cost 2 ˚C scenarios but rather lead to a projected level of 55 gigatonnes in 2030, and also notes that much greater emission reduction efforts will be required than those associated with the intended nationally determined contributions in order to hold the increase in the global average temperature to below 2 ˚C above pre-industrial levels by reducing emissions to 40 gigatonnes or to 1.5 ˚C above pre-industrial levels by reducing to a level to be identified in the special report referred to in paragraph 21 below;

But the actual scale of the gap is best seen from the centerpiece graphic of the UNFCCC Synthesis report on the aggregate effect of INDCs, prepared in the run-up to COP21 Paris. Note that this website also has all the INDC submissions in three large Pdf files.

The graphic I have updated with estimates of the policy gap with my take on revised Millar et. al 2017 policy gaps shown by red arrows.

The extent of the arrows could be debated, but will not alter the fact that Millar et. al 2017 are assuming that by adjusting the figures and assuming that they are thinking for the whole world, that the emissions objectives will be achieved. The reality is that very few countries have committed to reducing their emissions by anything like an amount consistent with even a 2°C pathway. Further, that commitment is just until 2030, not for the 70 years beyond that. There is no legally-binding commitment in the Paris Agreement for a country to reduce emissions to zero sometime before the end of the century. Further, a number of countries (including Nigeria, Togo, Saudi Arabia, Turkmenistan, Iraq and Syria) have not signed the Paris Agreement – and the United States has given notification of coming out of the Agreement. Barring huge amounts of funding or some technological miracle most developing countries, with a majority of the world population, will go on increasing their emissions for decades. This includes most of the countries who were Non-Annex Developing Countries to the 1992 Rio Declaration. Collectively they accounted for just over 100% of the global GHG emissions growth between 1990 and  2012.

As some of these Countries’ INDC Submissions clearly state, most will not sacrifice economic growth and the expectations of their people’s for the unproven dogma of politicalized academic activists in completely different cultures say that the world ought to cut emissions. They will attend climate conferences and be seen to be on a world stage, then sign meaningless agreements afterward that commit them to nothing.

As a consequence, if catastrophic anthropogenic global warming is true (like the fairies at the bottom of the garden) and climate mitigation reduction targets are achieved, the catastrophic climate change will be only slightly less catastrophic and the most extreme climate mitigation countries will be a good deal poorer. The non-policy countries will the ones better off. It is the classic free-rider problem, which results in an underprovision of those goods or services. If AGW is somewhat milder, then even these countries will be no worse off.

This is what really irritates me. I live in Britain, where the Climate Change Act 2008 has probably the most ludicrous targets in the world. That Act was meant to lead the world on climate change. The then Environment Secretary David Miliband introduced the bill with this message in March 2007.

From the graphic above COP21 Paris showed that most of the world is not following Britain’s lead. But the “climate scientists” are so stuck in their manipulated models, they forget that their models and beliefs of their peers are not the realities of the wider world. The political realities mean that reduction of CO2 emissions are net harmful to the people of Britain, both now and for future generations of Britains. The activists are just as wilfully negligent in shutting down any independent review of policy as a pharmaceutical company who would push one of its products onto the consumers without an independent evaluation of both the benefits and potential side effects.

Kevin Marshall

Nature tacitly admits the IPCC AR5 was wrong on Global Warming

There has been a lot of comment on a recent paper at nature geoscience “Emission budgets and pathways consistent with limiting warming to 1.5C” (hereafter Millar et. al 2017)

When making a case for public policy I believe that something akin to a process of due diligence should be carried out on the claims. That is the justifications ought to be scrutinized to validate the claims. With Millar et. al 2017, there are a number of issues with the make-up of the claims that (a) warming of 1.5C or greater will be achieved without policy (b) constraining the emissions  

The baseline warming

The introduction states
Average temperatures for the 2010s are currently 0.87°C above 1861–80,

A similar quote from UNIPCC AR5 WG1 SPM page 5

The total increase between the average of the 1850–1900 period and the 2003–2012 period is 0.78 [0.72 to 0.85] °C, based on the single longest dataset available.

These figures are all from the HADCRUT4 dataset. There are three areas to account for the difference of 0.09°C. Mostly it is the shorter baseline period. Also, the last three years have been influenced by a powerful and natural El-Nino, along with the IPCC using an average of the last 10 years.

The warming in the pipeline

There are valid reasons for the authors differing from the IPCC’s methodology. They start with the emissions from 1870 (even though emissions estimates go back to 1850). Also, if there is no definite finish date, it is very difficult to calculate the warming impact to date. Consider first the full sentence quoted above.

Average temperatures for the 2010s are currently 0.87°C above 1861–80, which would rise to 0.93°C should they remain at 2015 levels for the remainder of the decade.

This implies that there is some warming to come through from the impact of the higher greenhouse gas levels. This seems to be a remarkably low and over a very short time period. Of course, not all the warming since the mid-nineteenth century is from anthropogenic greenhouse gas emissions. The anthropogenic element is just guesstimated. This is show in AR5 WG1 Ch10 Page 869

More than half of the observed increase in global mean surface temperature (GMST) from 1951 to 2010 is very likely due to the observed anthropogenic increase in greenhouse gas (GHG) concentrations.

It was after 1950 when the rate largest increase in CO2 levels was experienced. From 1870 to 1950, CO2 levels rose from around 290ppm to 310ppm or 7%. From 1950 to 2010, CO2 levels rose from around 310ppm to 387ppm or 25%. Add in other GHG gases and there the human-caused warming should be 3-4 times greater in the later period than the earlier one, whereas the warming in the later period was just over twice the amount. Therefore if there is just over a 90% chance (very likely in IPCC speak) of over 50% of the warming post-1950 was human-caused, a statistical test relating to a period more than twice as long would have a lower human-caused element of the warming as being statistically significant. Even then, I view the greater than 50% statistic as being deeply flawed. Especially when post-2000, when the rate of rise in CO2 levels accelerated, whilst the rise in average temperatures dramatically slowed. There are two things that this suggests. First, the impact could be explained by rising GHG emissions being a minor element in temperature rise, with natural factors both causing some of the warming in the 1976-1998 period, then reversing, causing cooling, in the last few years. Second is that there is a darn funny lagged response of rising GHGs (especially CO2) to rises in temperature. That is the amount of warming in the pipeline has increased dramatically. If either idea has any traction then the implied warming to come of just 0.06°is a false estimate. This needs to be elaborated.

Climate Sensitivity

If a doubling of CO2 leads to 3.00°C of warming (the assumption of the IPCC in their emissions calculations), then a rise in CO2 levels from 290ppm to 398 ppm (1870 to 2014) eventually gives 1.37°C of warming. With other GHGs this figure should be around 1.80°C. Half that warming has actually occurred, and some of that is natural. So there is well over 1.0°C still to emerge. It is too late to talk about constraining warming to 1.5°C as the cause of that warming has already occurred.

The implication from the paper in claiming that 0.94°C will result from human emissions in the period 1870-2014 is to reduce the climate sensitivity estimate to around 2.0°C for a doubling of CO2, if only CO2 is considered, or around 1.5°C for a doubling of CO2, if all GHGs are taken into account. (See below) Compare this to AR5 WG1 section D.2 Quantification of Climate System Responses

The equilibrium climate sensitivity quantifies the response of the climate system to constant radiative forcing on multicentury time scales. It is defined as the change in global mean surface temperature at equilibrium that is caused by a doubling of the atmospheric CO2 concentration. Equilibrium climate sensitivity is likely in the range 1.5°C to 4.5°C (high confidence), extremely unlikely less than 1°C (high confidence), and very unlikely greater than 6°C (medium confidence).

The equilibrium climate sensitivity ECS is at the very bottom of the IPCC’s range and equilibrium climate response is reached in 5-6 years instead of mutlicentury time scales. This on top of the implied assumption that there is no net natural warming between 1870 and 2015.

How much GHG emissions?

With respect to policy, as global warming is caused by human greenhouse gas emissions, to prevent further human-caused warming requires reducing, and possibly eliminating global greenhouse emissions. In conjunction with the publication of the AR5 Synthesis report, the IPCC produced a slide show of the policy case laid out in the three vast reports. It was effectively a short summary of a summary of the synthesis report. Approaching the policy climax at slide 30 of 35:-

Apart from the policy objective in AR5 was to limit warming from 2°C, not 1.5°C, it also mentions the need to constrain GHG emissions, not CO2 emissions. Then slide 33 gives the simple policy simplified position to achieve 2°C of warming.

To the end of 2011 1900 GTCO2e of GHGs was estimated to have been emitted, whilst the estimate is around 1000 GTCO2e could be emitted until the 2°C warming was reached.

The is the highly simplified version. At the other end of the scale, AR5 WG3 Ch6 p431 has a very large table in a very small font to consider a lot of the policy options. It is reproduced below, though the resolution is much poorer than the original.

Note 3 states

For comparison of the cumulative CO2 emissions estimates assessed here with those presented in WGI AR5, an amount of 515 [445 to 585] GtC (1890 [1630 to 2150] GtCO2), was already emitted by 2011 since 1870

The top line is for the 1.5°C of warming – the most ambitious policy aim. Of note:-

  • The CO2 equivalent concentration in 2100 (ppm CO2eq ) is 430-480ppm.
  • Cumulative CO2 emissions (GtCO2) from 2011 to 2100 is 630 to 1180.
  • CO2 concentration in 2100 is 390-435ppm.
  • Peak CO2 equivalent concentration is 465-530ppm. This is higher than the 2100 concentration and if for CO2 alone with ECS = 3 would eventually produce 2.0°C to 2.6°C of warming.
  • The Probability of Exceeding 1.5 °C in 2100 is 49-86%. They had to squeeze really hard to say that 1.5°C was more than 50% likely.

Compare the above to this from the abstract of Millar et. al 2017.

If COemissions are continuously adjusted over time to limit 2100 warming to 1.5C, with ambitious non-COmitigation, net future cumulativCOemissions are unlikely to prove less than 250 GtC and unlikely greater than 540 GtC. Hence, limiting warming to 1.5C is not yet a geophysical impossibility, but is likely to require delivery on strengthened pledges for 2030 followed by challengingly deep and rapid mitigation.

They use tonnes of carbon as the unit of measure as against CO2 equivalent. The conversion factor is 3.664, so cumulative CO2 emissions need to be 870-1010 GtCO2 range. As this is to the end of 2015, not 2011 as in the IPCC report, it will be different. Subtracting 150 from the IPCC reports figures would give a range of 480 to 1030. That is, Millar et. al 2017 have reduced the emissions range by 75% to the top end of the IPCC’s range. Given the IPCC considered a range of 1.5-1.7°C of warming, this seems somewhat odd to then say it related to the lower end of the warming band, until you take into account that ECS has been reduced. But then why curtail the range of emissions instead calculating your own? It appears that again the authors are trying to squeeze a result within existing constraints.

However, this does not take into account the much higher levels of peak CO2 equivalent concentrations in table 6.3. Peak CO2 concentrations are around 75-95ppm higher than in 2100. Compare this to the green line in the central graph in Millar et. al 2017. 

 This is less than 50ppm higher than in 2100. Further in 2100 Millar et. al 2017 has CO2 levels of around 500ppm as against a mid-point of 410 in AR5. CO2 rising from 290 to 410ppm with ECS = 3.0 produced 1.50°C of warming. CO2 rising from 290 to 410ppm with ECS = 2.0 produced 1.51°C of warming. Further, this does not include the warming impact of other GHGs. To squeeze into the 1.5°C band, the mid-century overshoot in Millar et. al 2017 is much less than in AR5. This might be required in the modeling assumptions due to the very short time assumed in reaching full equilibrium climate response.

Are the authors playing games?

The figures do not appear to stack up. But then they appear to be playing around with figures, indicated by a statement in the explanation of Figure 2

Like other simple climate models, this lacks an explicit physical link between oceanic heat and carbon uptake. It allows a global feedback between temperature and carbon uptake from the atmosphere, but no direct link with net deforestation. It also treats all forcing agents equally, in the sense that a single set of climate response parameters is used in for all forcing components, despite some evidence of component-specific responses. We do not, however, attempt to calibrate the model directly against observations, using it instead to explore the implications of ranges of uncertainty in emissions, and forcing and response derived directly from the IPCC-AR5, which are derived from multiple lines of evidence and, importantly, do not depend directly on the anomalously cool temperatures observed around 2010.

That is:-

  • The model does not consider an “explicit physical link between oceanic heat and carbon uptake.” The IPCC estimated that over 90% of heat accumulation since 1970 was in the oceans. If the oceans were to belch out some of this heat at a random point in the future the 1.5°C limit will be exceeded.
  • No attempt has been made to “calibrate the model directly against observations”. Therefore there is no attempt to properly reconcile beliefs to the real world.
  • The “multiple lines of evidence” in IPCC-AR5 does not include a glaring anomaly that potentially falsifies the theory and therefore any “need” for policy at all. That is the divergence in actual temperatures trends from theory in this century.

Conclusions

The authors of Millar et. al 2017 have pushed out the boundaries to continue to support climate mitigation policies. To justify constraining emissions sufficient stop 1.5°C of warming the authors would appear to have

  • Assumed that all the warming since 1870 is caused by anthropogenic GHG emissions when there is not even a valid statistical test that confirms even half the warming was from this source.
  • Largely ignored any hidden heat or other long-term response to rises in GHGs.
  • Ignored the divergence between model predictions and actual temperature anomalies since around the turn of the century. This has two consequences. First, the evidence appears to strongly contradict the belief that humans are a major source of global warming and by implication dangerous climate change. Second, if it does not contradict the theory, suggests the amount of warming in the pipeline consequential on human GHG emissions has massively increased. Thus the 1.5°C warming could be breached anyway.
  • Made ECS as low as possible in the long-standing 1.5°C to 4.5°C range. Even assuming ECS is at the mid-point of the range for policy (as the IPCC has done in all its reports) means that warming will breach the 1.5°C level without any further emissions. 

The authors live in their closed academic world of models and shared beliefs. Yet the paper is being used for the continued support of mitigation policy that is both failing to get anywhere close to achieving the objectives and is massively net harmful in any countries that apply it, whether financially or politically.

Kevin Marshall

Commentary at Cliscep, Jo Nova, Daily Caller, Independent, The GWPF

Update 25/09/17 to improve formatting.