Charles Moore nearly gets Climate Change Politics post Paris Agreement

Charles Moore of the Telegraph has long been one of the towering figures of the mainstream media. In Donald Trump has the courage and wit to look at ‘green’ hysteria and say: no deal (see also at GWPF, Notalotofpeopleknowthat and Tallbloke) he understands not only the impact of Trump withdrawing from the climate agreement on future global emissions, but recognizes that two other major developed countries – Germany and Japan – whilst committed to reduce their emissions and spending lots of money on renewables are also investing heavily in coal. So without climate policy, the United States is reducing its emissions, but with climate commitments, emissions in Japan and Germany are increasing their emissions. However, there is one slight inaccuracy in Charles Moore’s account. He states

As for “Paris”, this is failing, chiefly for the reason that poorer countries won’t decarbonise unless richer ones pay them stupendous sums.

It is worse than this. Many of the poorer countries have not said they will decarbonize. Rather they have said that they will use the money to reduce emissions relative to a business as usual scenario.

Take Pakistan’s INDC. In 2015 they estimate emissions were 405 MtCO2e, up from 182 in 1994. As a result of ambitious planned economic growth, they forecast a BAU of 1603 MtCO2e in 2030. However, they can reduce that by 20% with about $40 billion in finance. That is, with $40bn, average annual emissions growth from 2015-2030 will still be twice that of 1994-2015. Plus Pakistan would like $7-$14bn pa for adaptation to climate change. The INDC Table 7 summarizes the figures.

Or Bangladesh’s INDC. Estimated BAU increase in emissions from 2011 to 2030 is 264%. They will unconditionally cut this by 5% and conditionally by a further 15%. The BAU is 7.75% annual emissions growth, cut to 7.5% unconditionally and 6% with lots of finance. The INDC Table 7 summarizes the figures.

I do not blame either country for taking such an approach, or the many others adopting similar strategies. They are basically saying that they will do nothing that impedes trying to raise living standards through high levels of sustained economic growth. They will play the climate change game, so long as nobody demands that Governments compromise on serving the best interests of their peoples. If only the Government’s of the so-called developed nations would play similar games, rather than impose useless burdens on the people they are supposed to be serving.

There is another category of countries that will not undertake to reduce their emissions – the OPEC members. Saudi Arabia, Iran, Venezuela, Kuwait, UAE and Qatar have all made submissions. Only Iran gives a figure. It will unilaterally cut emissions by 4% against BAU. With the removal of “unjust sanctions” and some financial assistance and technology transfer it conditional offer would be much more. But nowhere is the BAU scenario stated in figures. The reason these OPEC countries will not play ball is quite obvious. To achieve the IPCC objective of constraining warming to 2°C according to McGlade and Ekins 2015 (The geographical distribution of fossil fuels unused when limiting global warming to 2°C) would mean leaving 75% of proven reserves of fossil fuels in the ground and all of the unproven reserves. I did an approximate breakdown by major countries last year, using the BP Statistical Review of World Energy 2016.

It does not take a genius to work out that meeting the 2°C climate mitigation target would shut down a major part of the economies of fossil fuel producing countries in about two decades. No-one has proposed either compensating them, or finding alternatives.

But the climate alarmist community are too caught up in their Groupthink to notice the obvious huge harms that implementing global climate mitigation policies would entail.

Kevin Marshall

Plans to Increase Global Emissions at COP21 Paris

Summary

It is a necessary, but far from sufficient, condition to cut global greenhouse gas emissions for any increases in emissions in some parts of the world to be offset by emissions cuts elsewhere. INDC submissions for the COP21 in Paris contain proposed emissions targets between 2010 and 2030 suggest the opposite will be case. For every tonne of emissions reductions in 32 leading developed countries there will be at least three tonnes of emissions increases in 7 major developing countries. The net effect of these targets being achieved from these countries (which combined make up both 60% of global emissions and 60% of global population) will be to make global emissions 20% higher in 2030 than 2010. Using UNIPCC AR5 projections, unless there are large and rapid cuts in in global greenhouse emissions post 2030, any agreement based those submissions will not save the world from two degrees of dangerous global warming and will likely not save the world from three degrees of warming. This leads to a policy problem. Emissions reduction policies will only reduce a small part of the harms of climate change. So even if the more extreme claims of climate catastrophism are true, then it might be more beneficial for a nation to avoid emissions reduction policies.

Assumptions

In the following analysis makes these assumptions.

  • UNIPCC estimates of the relationship between global average temperature and atmospheric greenhouse gas levels are accurate.
  • UNIPCC estimates of the relationship between greenhouse gas emissions and atmospheric greenhouse gas levels are accurate.
  • Policy commitments will always turn into concrete policy.
  • Climate change policy priorities will not conflict with other priorities.
  • All policy will be effectively implemented in full, implying the requisite technological and project management capacities are available.

The Context

The World’s leaders meeting from 30 November to December 11 in Paris together to thrash out a plan to save the world from a dangerous two degrees of warming. In preparation 146 countries, representing 87% of Global Emissions have submitted plans to the United Nations Framework Convention on Climate Change (UNFCCC). These are available at the submissions website here. There is no-one who has gone through to evaluate whether these submissions are consistent with this objective. I have chosen a small sample of 7 major developing nations and 32 developing nations (EU 28 have a single target) which combined represent about 60% of global emissions and 60% of global population.

The level of global emissions control required to constrain global warming is given by the IPCC in their final version of the 2014 AR5 Synthesis Report page 21 Figure SPM 11(a) and reproduced below.

The dark blue band is the maximum emissions pathway to avoid going beyond 2 degrees of warming, with RCP2.6 denoting the central pathway. The dark orange pathway would produce 2.5-3.0 degrees of warming. According to the figure SPM 5(a) Annual GHG emissions in 2010 were 49 GtCO2. They are currently increasing by at least 2% a year. The extrapolated projection for 2030 is 70-75 GtCO2, roughly following the solid black line of the RCP8.5 BAU (non-policy) scenario. In 2015 this will be about 54 GtCO2. The minimum for policy is that global emissions should be at least no higher than they were in 2010, and preferably below that level to offset the cumulative overshoot that will occur.

How does the global policy requirement fit in with the country submissions?

If the IPCC projections are correct, to avoid 2 degrees of warming being exceeded there needs to be a global cap on greenhouse gas emissions of around 50 GtCO2 almost immediately and for that level to start to start falling in the early 2020s. Alternatively, if global emissions reach 60 GtCO2 without any prospect of major reductions thereafter then from the model projections three degrees of warming is likely to be exceeded. There is a large gap between these two scenarios, but even with submissions from a limited number of the major countries it is possible to state that the lower limit will be exceeded. This can be done by calculating emissions increases in the major high growth developing countries and the proposed emissions reductions in the major developed countries. This is not straight forward, as in most country submissions there are no clear figures, so various assumptions need to be made. For developing countries this is particularly difficult, as the estimated business as usual (BAU) emissions are usually not stated and are dependent upon assumptions of economic growth, though sometimes there are clues within the text. For the developed countries the projections are easier to calculate, as they are relative to a date in the past. There is a further issue of which measure of emissions to use. I have used the UNFCCC issued estimates of GHG emissions in its Country Briefs for 1990, 2000, 2005 & 2010.1 In many of the submissions there often both conditional and unconditional estimates of 2030 emissions. For developing countries the lower estimates are dependent on external funding. For the other countries, emissions reductions are expressed as a range. In every case I have used the lower emissions figure.2

For the developing countries, those with major projected emissions increases countries are as follows.3

Estimated targeted emissions increases from 2010 to 2030 for major developing countries based on INDC Submissions
Country

Emissons Change

INDC Submission

Country Brief

Mexico

30%

Mexico

Mexico

China

55%

China

China

Indonesia

90%

Indonesia

Indonesia

Turkey

115%

Turkey

Turkey

India

138%

India

India

Bangladesh

250%

Bangladesh

Bangladesh

Vietnam

260%

Vietnam

Vietnam

The targeted total increase GHG for these seven countries between 2010 and 2030 is estimated to be in excess of 13 Gt.

According to World Bank Data there were 3300 million people in these seven countries in 2013, or 46% of the global population.

For the developed countries those with the largest quantitative emissions reductions are as follows.4

Estimated targeted emissions change from 2010 to 2030 for major developed countries from INDC Submissions
Country

Emissons Change

INDC Submission

Country Brief

Australia

-30%

Australia

Australia

Canada

-29%

Canada

Canada

EU

-40%

EU

EU

Japan

-20%

Japan

Japan

USA

-28%

USA

USA

The targeted total decrease GHG for these thirty-two countries between 2010 and 2030 is estimated to be 4 Gt.

According to World Bank Data there were 900 million people in these thirty-two countries in 2013, or 13% of the global population.

For every one tonne of emissions reduction by developed countries, it will be replaced by at least three tonnes of emissions elsewhere. Bigger reductions by these developed countries will not close the gap, as their total 2010 emissions are just 12.9 G. The developing countries do not include a single African country, nor Pakistan, Iran, Venezuela, or numerous other countries. Yet it does include all the major developed countries.

Whilst the developing countries way not achieve this increase in emissions by 2030, collectively they will achieve this increase shortly after that date. Many of the developed countries may not achieve the emissions reductions due to changing priorities. For instance the EU targets reduction may not be achieved due to Germany abandoning nuclear power in favour of coal and Southern European states reducing renewables subsidies as a response to recent economic crises.

The Elephant in the Room

In 2030, even with an agreement based on the INDC submissions signed this December in Paris, and then fully implemented without compromise there is still a problem. If the IPCC models are correct, the only way to stop the 3 degrees of warming being exceeded is through rapid reductions in emissions in those countries where emissions have recently peaked (e.g. South Korea and China) along with steep reductions in emissions of countries where they are still increasing rapidly (e.g. India and Bangladesh). Unless a technological miracle happens in the next decade this is not going to happen. More likely is that global emissions may keep on rising as many slower-growing African and Asian nations have ever larger unit increases in emissions each year.

The Policy Problem

The justification for mitigation policy is most clearly laid out in the British 2006 Stern Review Summary of Conclusions page vi

Using the results from formal economic models, the Review estimates that if we don’t act, the overall costs and risks of climate change will be equivalent to losing at least 5% of global GDP each year, now and forever. If a wider range of risks and impacts is taken into account, the estimates of damage could rise to 20% of GDP or more.

That is the unknown and random costs of climate change can be exchanged for the lesser and predictable costs of policy. A necessary, but far from sufficient, condition of this happening is that policy will eradicate all the prospective costs of climate change. It could be that if warming is constrained to less than 2 degrees the costs of climate change would be trivial, so the reality could be a close approximation of Stern’s viewpoint. But if warming exceeds 3 degrees and the alleged harms are correct, then emissions reducing policies are likely to lead to net harms for the countries implementing those policies and a small net benefit for those countries without policy.

Kevin Marshall

Notes

  1. The exception is for Bangladesh. They are one of the few countries that clearly lays out 2030 estimates in MtCO2, but the 2010 estimate is about 20% lower than the UNFCCC figure. I have just lifted the Bangladeshi figures.
  2. For instance the USA the target is to reduce is emissions 26-28% on the 2005 level. I have used the 28% figure. The United States is about the only country not providing target figures for 2030. I would be imprudent to assume any greater reductions given that it is not certain even this level will be ratified by Congress.
  3. Not all the countries outside of the rich are targeting emissions increases. Brazil and Argentina are targeting emissions reductions, whilst Thailand and South Korea would appear to be targeting to maintaining emissions at around 2010 levels.
  4. Not all developed countries have emissions reduction targets.
  5. South Korea with 1.3% of 2010 global emissions could be included in developed countries, but its target it is to roughly maintain emissions at 2010 levels. Switzerland, Norway and Singapore are all committed to emissions reductions, but combined they have less 0.3 GT of emissions.

The Positives of Global Warming in Context

David Friedman makes some good points about the positive aspects of global warming. I would like to put the positives of global warming into context and pointing the way to making the analysis of the consequences of global warming more rigorous.

The consequences of global warming may have positive and negative consequences. The severity of any consequence should be assessed according to three factors.

  1. Magnitude – how large it will be. This can be over a number of dimensions. So a predicted worsening of hurricanes, for instance, might be in frequency, power and area.
  2. Likelihood. The Probability of a forecast event it occurring.
  3. Randomness. It is predicted the weather systems will become destabilised, so the weather will become the norm.

When extreme events are postulated, the magnitude that is most often over-stated is time. So sea levels are imagined to rise by a foot a year, not a century at the current rate (3.2mm per year is the best estimate). The rate of change is crucial here. Incremental changes over generational times scale we will not notice globally, as economic conditions change much more rapidly than this. Also there are unstated assumptions about the likelihood of the events. From an economic point of view, the potential costs can be many times over-stated by a combination of magnitude and likelihood. There are two main reasons to believe this is the case – adaptation and way-markers.

Adaptation is people changing to changed circumstances. The reason that living standards are over 30 times greater and the world population is more than 10 times greater than 300 years ago is than the human race cannot just adapt to changing conditions – in wealthy countries extreme weather events and failed harvests are hardly a problem. Look back to the 1960s and 1970s, the mainstream forecasts were for increasing poverty and starvation. With the exceptions where governments are extremely bad (North Korea, Zimbabwe) or there has been extensive conflict (Zaire), this has not been the case. But many of the prophesies of doom assume no adaptation at all. So literally, farmers will grow the same crops they always have, and people will not think of moving as the sea immerses their houses.

Way-markers are the signals of climate change happening now. Many of the extreme short-term forecasts have been falsified, or shown to be based on pseudo-science. Sea levels have failed to rise by 25 metres anytime soon, the Arctic was not ice-free in the summer of 2008, nor will it be in 2013; the snows of Kilimanjaro are not primarily disappearing due to rising temperatures; and the Himalayan glaciers will not be gone by 2035. The Bangladesh landmass has increased; the Amazon rainforest is not about to reach a tipping point; and the Maldives will not disappear beneath the waves. With these clear near-term failures, it is reasonable to say that more long-term extrapolations will be unlikely and exaggerated in magnitude.

On the other side, whilst individuals and communities are incapable of adapting to changes, the assumption is that Governments can fix anything at minimal cost. So, subject to a global agreement, CO2 can be constrained (according to the UK Stern Review) at one fifth to one twentieth of the likely costs of doing nothing. No allowance is made that government projects tend to overrun on costs and underperform on benefits, nor that the this degree of underperformance tends to proportionately rise with lack of planning, vagueness of objections, complexity of organisations involved and scale.

Finally, for those with a grounding in economics, I have an unfinished project analysing the above issues graphically here and here.