The Climate Alarmist Reaction to a Trump Presidency

A few weeks ago cliscep had a piece Trump, climate and the future of the world that looked at the immediate reactions to the surprise victory in the US Presidential election amongst the climate community. Brad Keyes noted Jo Romm’s piece will President Trump pull the plug on a livable climate?. To support this Romm stated

Indeed, one independent firm, Lux Research, projected last week that “estimated emissions would be 16 percent higher after two terms of Trump’s policies than they would be after two terms of Clinton’s, amounting to 3.4 billion tons greater emissions over the next eight years.”

There is a little graph to sort of back this up.

Whilst Romm then states two reasons why he does not think emissions will rise so much (Trump will cause a massive recession and will not win a second term) he then states the Twitter quote:-

That said, the damage and delay that even a one-term President Trump could do will make the already difficult task of keeping total warming well below 2°C essentially impossible.

So a difference of much less than 3.4 GtCO2e over eight years will make keeping total warming well below 2°C essentially impossible.
Before looking at the evidence that contradicts this, there are even more bizarre claims made by the expert climate scientists at RealClimate. They use a different graph which is probably a couple of years old and explain:-

Here are some numbers. Carbon emissions from the United States have been dropping since the year 2000, more than on-track to meet a target for the year 2020. Perhaps with continued effort and improving technology, emissions might have dropped to below the 2020 target by 2020, let’s say to 5 gigatons of CO2 per year (5000 megatons in the plot). In actuality, now, let’s say that removing restrictions on energy inefficiency and air pollution could potentially lead to US emissions by 2020 of about 7 gigatons of CO2. This assumes that future growth in emissions followed the faster growth rates from the 1990’s.
Maybe neither of these things will happen exactly, but these scenarios give us a high-end estimate for the difference between the two, which comes to about 4 gigatons of CO2 over four years. There will also probably be extra emissions beyond 2020 due to the lost opportunity to decarbonize and streamline the energy system between now and then. Call it 4-6 gigatons of Trump CO2.
This large quantity of gas can be put into the context of what it will take to avoid the peak warming threshold agreed to in Paris. In order to avoid exceeding a very disruptive warming of 1.5 °C with 66% probability, humanity can release approximately 220 gigatons of CO2 after January, 2017 (IPCC Climate Change 2014 Synthesis report, Table 2.2, corrected for emissions since 2011). The 4-6 Gtons of Trump CO2 will not by itself put the world over this threshold. But global CO2 emission rates are now about 36 gigatons of CO2 per year, giving a time horizon of only about six years of business-as-usual (!) before we cross the line, leaving basically no time for screwing around. To reach the catastrophic 2 °C, about 1000 gigatons of CO2 remain (about 20 years of business as usual). Note that these estimates were done before global temperatures spiked since 2014 — we are currently at 1.2 °C! So these temperature boundaries may be closer than was recently thought.

RealClimate come up with nearly twice the difference made by Joe Romm / Lux Research, but at least admit in the final paragraph that whoever won would not make much difference.
There are two parts to putting these analyses into context – the US context and the global one.
In the USA emissions have indeed been falling since 2000, this despite the population growing. The rate of decline has significantly increased in the years of the Obama Presidency, but for reasons quite separate from actions to reduce emissions. First there was the credit crunch, followed by the slowest recovery in US history. Second, the high oil price encouraged emissions reductions, along with the loss of energy-intensive industries to countries with lower energy costs. Third is that the shale gas revolution has meant switching from coal to gas in electricity production.
But the global context is even more important. RealClimate does acknowledge the global figure, but only mentions CO2 emissions. The 36GtCO2 is only two-thirds of total greenhouse gas emissions of about 55GTCO2e and that figure is rising by 1-2% a year. The graph – reproduced from the USA INDC submission to the UNFCCC – clearly states that it is in million tonnes of carbon dioxide equivalent. What is more, these are vague policy proposals, that President Obama would have been unable to get through Congress. Further, most of the proposed emission reductions were through extrapolating trends that of what has been happening without any policy intervention.
If the 1.5°C limit breached from 220 GtCO2e of additional emissions, it will be breached in the run-up to Christmas 2020. The 1000 GtCO2e for the 2°C limit was from 2011. By simple arithmetic it is now below 800GtCO2e with about 15 years remaining if (a) a doubling of CO2 levels (or equivalent GHG gases) leads to 3°C of warming (b) the estimated quantity of emissions to a unit rise in atmospheric gas levels is correct and (b) the GHG gas emitted is retained for a very long period in the atmosphere.
Even simple arithmetic is not required. Prior to the Paris talks the UNFCCC combined all the INDCs – including that of the USA to cut emissions as shown in the graph above – were globally aggregated and compared to the approximate emissions pathways for 1.5°C and least-cost 2°C warming. The updated version, post-Paris is below.

The difference Donald Trump will make is somewhere in the thickness of the thick yellow line. There is no prospect of the aimed-for blue emissions pathways. No amount of ranting or protests at the President-elect Trump will change the insignificant difference the United States will make with any politically-acceptable and workable set of policies, nor can make in a country with less than a twentieth of the global population and less that one seventh of global emissions.

Kevin Marshall

Update on a Global Carbon Tax

In a previous post I looked a statement made by Richard Tol in his recent paper The Structure of the Climate Debate

Only a modest carbon tax is needed to keep atmospheric concentrations below a high target but the required tax rapidly increases with the stringency of the target. If concentrations are to be kept below 450 ppm CO2eq, the global carbon tax should reach some $210/tCO2 in 2020 or so (Tol 2013).

Tol, to his credit, replied to me (and others) in the cliscep comments. In particular

Note that these climate policies consist of two components: An initial carbon tax, and its rate of increase (4-6% a year).

The $210 carbon tax in 2020 is just a starting point. With a 5% escalation, it would double every 14 years making the carbon tax $910 in 2050, $3070 in 2075 and $10,400 in 2100. The escalator is the far more important aspect in reducing demand for fossil fuels through a combination of reducing energy use and switching to more expensive (and often less convenient) renewable sources. The escalator was not clear in the original article, and Richard Tol has agreed to make a correction.

Consider again just imposing a fixed $210 carbon tax. From the British perspective the additional tax on petrol (gasoline), with 20% VAT applied, is equivalent to 47p a litre added to the retail price. The tax is already nearly 70p a litre, so unlikely to have the impact on motorists of reducing their consumption by 90% or more. Even with the tax at 200p a litre implied by a $910 t/CO2 tax (making petrol £3.13 a litre) may not achieve this objective. For a car doing 15000 miles at 39mpg, this would generate an additional cost to the owner of £3500 per year. It would still be less than the depreciation on a family car averaged over the first three years. It might also be less than the full costs of converting to electric cars, particularly if the roll-out was not subsidized on the purchase cost and provision of charging points. Within the UK, the carbon tax would also replace the current renewables policy. Here the escalator would really hit home. For coal-fired power stations producing 400kg CO2 per megawatt hour, the carbon tax would be £70Mwh in 2020 and £300Mwh in 2050. Gas-fired power stations would have a tax of about half that level. Even wind turbines, backed by massive pump-storage schemes would be much cheaper. Nuclear power would be the cheapest alternative of all. But British voters are hardly going to keep on voting for a Government that imposes real increases in taxes of five percent a year until they become unaffordable except for the very rich.

However, it is from the global perspective that the cost of the carbon tax really hits home. In another comment Tol says

The big worry for climate policy, studiously avoided by the majority of its advocates, is that you need lots of cheap energy in the early stages of economic development.

It is worth stating again that a Global Carbon Tax needs to be Global to achieve the desired objectives. From the UNIPCC AR5 Synthesis Report Summary for Policy Makers is graphic SPM11(a). This shows the non-policy or Business as Usual RCP8.5 scenario, where emissions in 2100 are projected to be over 2.5 times the level of 2010. The 2C warming target is the RCP2.6 scenario. I have inserted a big arrow to show the difference that the global carbon tax needs to make. It can be demonstrated that most of the emissions growth will come from the developing countries, following the pattern from at least 1990.


The scale of the harm of policy is by assuming that the $210 carbon tax is applied without any change in demand at all, using the estimated CO2 emissions from fossil fuels for 2013 from CDIAC and the IMF 2015 GDP figures for ballpark estimates.
Global CO2 emissions from fossil fuels were about 33.8 billion tonnes (two-thirds of total GHG emissions). A $210 carbon tax without any effect on demand would thus generate $7100 bn. This represents nearly 10% of global GBP of $73500bn. If we assume 2% emissions growth and 3% economic growth, then the carbon tax would represent 9.6% of GDP in 2020 without any drop in emissions.
Here is the same calculation for selected countries using 2013 emissions and GDP data.

30-33% Iran, Russia, South Africa
19-20% India, China
16-18% Thailand, Malaysia, Vietnam
11-14% Poland, Czech Republic, Pakistan, Egypt, Indonesia.
7% Bangladesh, Philippines
6-7% USA, Japan, Canada, Australia
4-5% Spain. Germany, Nigeria
UK 3.4% France 2.9%

The highest tax rates are a result of inefficient economic systems. Iran has subsidised petrol, effectively a negative carbon tax. South Africa’s high emissions are as a result of apartheid. Oil embargoes caused it to convert coal to liquids, a process that generates 4-5 times the CO2 of burning coal alone. Russia, in common with its neighbours, still has the legacy of the economically-inefficient communism.
The carbon tax would also be high as a proportion of GDP for the rapidly emerging economies. It highlights the Tol’s comment about needing lots of cheap energy in the early stages of economic development. With higher fossil fuel emissions per $1000 of GDP the impact on output would be relatively greater in the emerging economies than in the OECD. A globally uniform carbon tax would end up transferring back some manufacturing back to the more energy efficient economies, slowing economic growth and thus emissions growth.
More importantly, emerging countries have large parts of the population with very low energy consumption. Even those with access to gas and electricity have much lower energy consumption than is typical in the West, whether from heating, air conditioning, cooking, or private transport. Pushing up the cost of energy will massively slow down the spread of consumerism and consequent improvements in living standards.

Three years ago I looked at the takeaway policy quote from the Stern Review.

Using the results from formal economic models, the Review estimates that if we don’t act, the overall costs and risks of climate change will be equivalent to losing at least 5% of global GDP each year, now and forever. If a wider range of risks and impacts is taken into account, the estimates of damage could rise to 20% of GDP or more. In contrast, the costs of action – reducing greenhouse gas emissions to avoid the worst impacts of climate change – can be limited to around 1% of global GDP each year.

I largely agree with Richard Tol when he states that a carbon tax is the optimal policy in terms of maximum effect for minimum cost, at least with respect to fossil fuel emissions. Yet a high, and rapidly increasing, carbon tax would cost far more than 1% of global GDP each year, even if the additional tax revenue was spent efficiently and/or used to reduce other taxes. But the most pernicious effects would be felt in the effects on long-term economic growth – the very growth that is moving billions of people out of poverty towards the far better living standards we enjoy in the Western World. The  carbon tax does not present a feasible policy even in theory to achieve the objectives desired. Yet is, in theory, the best policy available.

Kevin Marshall

Richard Tol on a Global Carbon Tax

Richard Tol, one of the World’s leading economists on climate, has just had published The Structure of the Climate Debate, a paper that makes some very good comments on the gulf between optimal policy and the reality of ineffective policy backed by a great army of bureaucrats, rent-seeking politicians and environmentalists who exaggerate the issues. It is this optimal policy  – a global carbon tax to constrain warming to 2C – that I take issue with. Both economic theory and the empirical evidence contradict this.  The following is a comment posted at cliscep

Richard Tol states in his paper

Only a modest carbon tax is needed to keep atmospheric concentrations below a high target but the required tax rapidly increases with the stringency of the target. If concentrations are to be kept below 450 ppm CO2eq, the global carbon tax should reach some $210/tCO2 in 2020 or so (Tol 2013).

The 450 ppm CO2eq, would produce 2C of warming from pre-industrial levels if a doubling of CO2 on its own produces 3C of warming. The UNFCCC produced a graph for COP21 to illustrate the global emissions pathway needed to ensure 2C limit :-

Whereas even with the all the vague policy proposals fully implemented global emissions will be about 10% higher in 2030 than in 2010, the 2C pathway has emissions 10-30% lower. That means a carbon tax of $210/tCO2 (now £170) would have to turn around the global relentless rise in emissions and have them falling rapidly. I am deeply sceptical that such a global policy would achieve anything like the that difference would be achieved even with an omnipotent, omniscient, and omnipresent planner to impose the tax. The reasons for that scepticism can be found by applying the tax to real world examples.
First let us apply a £170/tCO2 carbon tax to petrol, which produces 2.30kg of CO2 per litre. With 20% VAT applied is equivalent to 47p a litre added to the retail price. (Current excise duties with VAT are equivalent to £300/tCO2, the diesel £250/tCO2). For a car doing 15000 miles at 39mpg, this would generate an additional cost to the owner of £820 per year. Maybe a 15-30% increase in the full costs of running a small car in the UK. There is plenty of empirical visence of the effect of the oil price movements in the last couple of decades (especially in the period 2004-2008 when the price increased) to show that costs increases will have a much smaller effect on demand, whereas for the carbon tax to be effective it would need to have a much greater impact than the percentage cost increase.
Second, let us apply a $210/tCO2 carbon tax to coal-fired power stations. They produce about 400kg of CO2 per megawatt, so the cost would rise by $84MWH. In China, coal-fired electricity will retail at less than $30 MwH. China would rapidly switch to nuclear power. Even so, its power generation emissions might not start falling for at least a decade. Alternatively it might switch to gas, where the carbon tax would be half that of coal.
However, there is another lesson from oil prices, this time over the last three years. A small fall in demand leads to large falls in price, in the short term. That is the market responds by offsetting the cost of the global carbon tax. To use terms of basic economics the demand for fossil fuels is highly inelastic with respect to changes in price, and the supply of fossil fuels in the short term is highly inelastic to changes in demand.  Emissions reductions policies have not just turned out to be pretty useless in practice, they are pretty useless in theory (with real world political constraints removed) as well.

Kevin Marshall

 

Failed Arctic Sea Ice predictions illustrates Degenerating Climatology

The Telegraph yesterday carried an interesting article. Telegraph Experts said Arctic sea ice would melt entirely by September 2016 – they were wrong

Dire predictions that the Arctic would be devoid of sea ice by September this year have proven to be unfounded after latest satellite images showed there is far more now than in 2012.
Scientists such as Prof Peter Wadhams, of Cambridge University, and Prof Wieslaw Maslowski, of the Naval Postgraduate School in Moderey, California, have regularly forecast the loss of ice by 2016, which has been widely reported by the BBC and other media outlets.

In June, Michel at Trustyetverify blog traced a number of these false predictions. Michel summarized

(H)e also predicted until now:
• 2008 (falsified)
• 2 years from 2011 → 2013 (falsified)
• 2015 (falsified)
• 2016 (still to come, but will require a steep drop)
• 2017 (still to come)
• 2020 (still to come)
• 10 to 20 years from 2009 → 2029 (still to come)
• 20 to 30 years from 2010 → 2040 (still to come).

The 2016 prediction is now false. Paul Homewood has been looking at Professor Wadhams’ failed prophesies in a series of posts as well.

The Telegraph goes on to quote from three, more moderate, sources. One of them is :-

Andrew Shepherd, professor of earth observation at University College London, said there was now “overwhelming consensus” that the Arctic would be free of ice in the next few decades, but warned earlier predictions were based on poor extrapolation.
“A decade or so ago, climate models often failed to reproduce the decline in Arctic sea ice extent revealed by satellite observations,” he said.
“One upshot of this was that outlier predictions based on extrapolation alone were able to receive wide publicity.
“But climate models have improved considerably since then and they now do a much better job of simulating historical events.
This means we have greater confidence in their predictive skill, and the overwhelming consensus within the scientific community is that the Arctic Ocean will be effectively free of sea ice in a couple of decades should the present rate of decline continue.

(emphasis mine)

Professor Shepard is saying that the shorter-term (from a few months to a few years) highly dire predictions have turned out to be false, but improved techniques in modelling enable much more sound predictions over 25-50 years to be made. That would require a development on two dimensions – scale and time. Detecting a samll human-caused change over decades needs far greater skill in differentiating from natural variations on a year-by-year time scale from a dramatic shift. Yet it would appear that at the end of the last century there was a natural upturn following from an unusually cold period in the 1950s to the 1970s, as documented by HH Lamb. This resulted in an extension in the sea ice. Detection of the human influence problem is even worse if the natural reduction in sea ice has worked concurrently with that human influence. However, instead of offering us demonstrated increased technical competency in modelling (as opposed to more elaborate models), Professor Shepard offers us the consensus of belief that the more moderate predictions are reliable.
This is a clear example of degenerating climatology that I outlined in last year. In particular, I proposed that rather than progressive climate science – increasing scientific evidence and more rigorous procedures for tighter hypotheses about clear catastrophic anthropogenic global warming – we have degenerating climatology, which is ever weaker and vaguer evidence for some global warming.

If Professor Wadhams had consistently predicted the lack of summer sea ice for a set time period, then it would be strong confirmation of a potentially catastrophic problem. Climatology would have scored a major success. Even if instead of ice-free summers by now, there had been evidence of clear acceleration in the decline in sea ice extent, then it could have been viewed as some progression. But instead we should accept a consensus of belief that will only be confirmed or refuted decades ahead. The interpretation of success or failure. will then, no doubt, be given to the same consensus who were responsible for the vague predictions in the first place.

Kevin Marshall

Are the Paris Floods due to climate changing for the worse?

The flood of the River Seine is now past the 6.1m peak reached in the early hours of the early hours of Saturday 4th June. 36 hours later, the official measurements at Pont d’Austerlitz show that the level is below 5.7m. The peak is was just below the previous major flood in 1982 of 6.15m, but well above the previous flood emergency in 2000, when waters peaked at 3.92m. Below is a snapshot of a continually-updated graphic at the Environment Ministry VIGICRUES site.

Despite it being 16 years since this last emergency, the reaction of the authorities has been impressive. From giving people warnings of the rising levels; evacuating people; stopping all non-emergency vessels on the Seine; protecting those who live on the river; and putting into operation emergency procedures for the movement of art treasures out of basement storage in the Louvre.Without these measures the death toll and the estimated €600m cost of the flood would undoubtedly have been much higher.

The question that must be asked is whether human-caused climate change has made flooding worse on a river that has flooded for centuries. The data is hard to come by. An article in Le Figaro last year gave the top ten record floods, the worst being in 1658.

Although this is does show that the current high of 6.10m is a full 50cm below the tenth worst in 1920, there is no indication of increasing frequency.

From a 2012 report Les entreprises face au risque inondation I have compiled a graphic of all flood maximums which were six metres or higher.

This shows that major floods were much more frequent in the period 1910 to 1960 than in the period before or after. Superficially it would seem that recently flooding had been getting less severe. But this conclusion would ignore the many measures that were put in place after the flood of 1910. The 2014 OECD Report Seine Basin, Île-de-France: Resilience to Major Floods stated:-

Since 1910, the risk of a Seine River flood in the Ile-de-France region has been reduced in various stages by protective structures, including dams built upstream and river development starting in the 1920s, then in the 1950s up until the early 1990s. Major investments have been limited in the last decades, and it appears that protection levels are not up to the standards of many other comparable OECD countries, particularly in Europe. On the other hand, the exposure to the risk and the resulting vulnerability are accentuated by increasing urban density in the economic centre of France, as well as by the construction of a large number of areas activity centres and critical infrastructures (transport, energy, communications, water) along the Seine River.

If the climate impact had become more severe, then one would expect the number of major floods to increase given the limited new measures to prevent them. However, the more substantial measures taken in the last century could explain the reduced frequency of major floods, though the lack of floods between 1882 and 1910 suggests that the early twentieth century could have been an unusually wet period. Without detailed weather records my guess is that it is a bit of both. Extreme rainfall has decreased, whilst flood prevention measures have also had some impact on flood levels.

Kevin Marshall

Beliefs and Uncertainty: A Bayesian Primer

Ron Clutz’s introduction, based on a Scientific American article by John Horgan on January 4, 2016, starts to grapple with the issues involved.

The take home quote from Horgan is on the subject of false positives.

Here is my more general statement of that principle: The plausibility of your belief depends on the degree to which your belief–and only your belief–explains the evidence for it. The more alternative explanations there are for the evidence, the less plausible your belief is. That, to me, is the essence of Bayes’ theorem.

“Alternative explanations” can encompass many things. Your evidence might be erroneous, skewed by a malfunctioning instrument, faulty analysis, confirmation bias, even fraud. Your evidence might be sound but explicable by many beliefs, or hypotheses, other than yours.

In other words, there’s nothing magical about Bayes’ theorem. It boils down to the truism that your belief is only as valid as its evidence. If you have good evidence, Bayes’ theorem can yield good results. If your evidence is flimsy, Bayes’ theorem won’t be of much use. Garbage in, garbage out.
With respect to the question of whether global warming is human caused, there is basically a combination of three elements – (i) Human caused (ii) Naturally caused (iii) Random chaotic variation. There may be a number of sub-elements and an infinite number of combinations including some elements counteracting others, such as El Nino events counteracting underlying warming. Evaluation of new evidence is in the context of explanations being arrived at within a community of climatologists with strong shared beliefs that at least 100% of recent warming is due to human GHG emissions. It is that same community who also decide the measurement techniques for assessing the temperature data; the relevant time frames; and the categorization of the new data. With complex decisions the only clear decision criteria is conformity to the existing consensus conclusions. As a result, the original Bayesian estimates become virtually impervious to new perspectives or evidence that contradicts those original estimates.

Science Matters

Those who follow discussions regarding Global Warming and Climate Change have heard from time to time about the Bayes Theorem. And Bayes is quite topical in many aspects of modern society:

Bayesian statistics “are rippling through everything from physics to cancer research, ecology to psychology,” The New York Times reports. Physicists have proposed Bayesian interpretations of quantum mechanics and Bayesian defenses of string and multiverse theories. Philosophers assert that science as a whole can be viewed as a Bayesian process, and that Bayes can distinguish science from pseudoscience more precisely than falsification, the method popularized by Karl Popper.

Named after its inventor, the 18th-century Presbyterian minister Thomas Bayes, Bayes’ theorem is a method for calculating the validity of beliefs (hypotheses, claims, propositions) based on the best available evidence (observations, data, information). Here’s the most dumbed-down description: Initial belief plus new evidence = new and improved belief.   (A fuller and…

View original post 1,082 more words

CO2 Emissions from Energy production forecast to be rising beyond 2040 despite COP21 Paris Agreement

Last week the US Energy Information Administration (EIA) published their INTERNATIONAL ENERGY OUTLOOK 2016. The Daily Caller (and the GWPF) highlighted the EIA’s summary energy energy production. This shows that the despite the predicted strong growth in nuclear power and implausibly high growth in renewables, usage of fossil fuels are also predicted to rise, as shown in their headline graphic below.

For policy purposes, the important aspect is the translation into CO2 emissions. In the final Chapter 9. Energy-related CO2 Emissions figure 9.3 shows the equivalent CO2 Emissions in billions of tonnes of CO2. I have reproduced the graphic as a stacked bar chart.

Data reproduced as a stacked bar chart.

In 2010 these CO2 emissions are just under two-thirds of total global greenhouse gas emissions. The question is how does this fit into the policy requirements to avoid 2°C from the IPCC’s Fifth Assessment Report? The International Energy Authority summarized the requirements very succicently in World Energy Outlook 2015 Special Report page 18

The long lifetime of greenhouse gases means that it is the cumulative build-up in the atmosphere that matters most. In its latest report, the Intergovernmental Panel on Climate Change (IPCC) estimated that to preserve a 50% chance of limiting global warming to 2 °C, the world can support a maximum carbon dioxide (CO2) emissions “budget” of 3 000 gigatonnes (Gt) (the mid-point in a range of 2 900 Gt to 3 200 Gt) (IPCC, 2014), of which an estimated 1 970 Gt had already been emitted before 2014. Accounting for CO2 emissions from industrial processes and land use, land-use change and forestry over the rest of the 21st century leaves the energy sector with a carbon budget of 980 Gt (the midpoint in a range of 880 Gt to 1 180 Gt) from the start of 2014 onwards.

From the forecast above, cumulative CO2 emissions from 2014 with reach 980 Gt in 2038. Yet in 2040, there is no sign of peak emissions.

Further corroboration comes from the UNFCCC. In preparation for the COP21 from all the country policy proposals they produced a snappily titled Synthesis report on the aggregate effect of intended nationally determined contributions. The UNFCCC have updated the graphics since. Figure 2 of 27 Apr 2016 shows the total GHG emissions, which were about 17 Gt higher than the CO2 emissions from energy emissions in 2010.

The graphic clearly shows that the INDCs – many with very vague and non-verifiable targets – will make very little difference to the non-policy emissions path. Yet even this small impact is contingent on those submissions being implemented in full, which is unlikely in many countries. The 2°C target requires global emissions to peak in 2016 and then head downwards. There are no additional policies even being tabled to achieve this, except possibly by some noisy, but inconsequential, activist groups. Returning to the EIA’s report, figure 9.4 splits the CO2 emissions between the OECD and non-OECD countries.

The OECD countries represent nearly all countries who propose to reduce their CO2 emissions on the baseline 1990 level, but their emissions are forecast by the EIA still to be 19% higher in 2040. However, the increase is small compared to the non-OECD countries – who mostly are either proposing to constrain emissions growth or have no emissions policy proposals – with emissions forecast to treble in fifty years. As a result the global forecast is for CO2 emissions to double. Even if all the OECD countries completely eliminate CO2 emissions by 2040, global emissions will still be a third higher than in 1990. As the rapid economic growth in the former Third World reduces global income inequalities, it is also reducing the inequalities in fossil fuel consumption in energy production. This will continue beyond 2040 when the OECD with a sixth of the world population will still produce a third of global CO2 emissions.

Unless the major emerging economies peak their emissions in the next few years, then reduce the emissions rapidly thereafter, the emissions target allegedly representing 2°C or less of global warming by 2100 will not be met. But for countries like India, Vietnam, Indonesia, Bangladesh, Nigeria, and Ethiopia to do so, with the consequent impact on economic growth, is morally indefensible.

Kevin Marshall

 

James Ross Island warming of past 100 years not unusual

At Wattsupwiththat there is a post by Sebastian Lüning The Medieval Warm Period in Antarctica: How two one-data-point studies missed the target.

Lüning has the following quote and graphic from Mulvaney et al. 2012, published in Nature.

But the late Bob Carter frequently went on about the recent warming being nothing unusual. Using mainstream thinking, would you trust a single climate denialist against proper climate scientists?

There is a simple test. Will similar lines fit to data of the last two thousand years? It took me a few minutes to produce the following.

Bob Carter is right and nine leading experts, plus their peer reviewers are wrong. From the temperature reconstruction there were at least five times in the last 2000 years when there were similar or greater jumps in average temperature. There are also about seven temperature peaks similar to the most recent.

It is yet another example about how to look at the basic data rather than the statements of the experts. It is akin to a court preferring the actual evidence rather than hearsay.

Kevin Marshall

William Connolley is on side of anti-science not the late Bob Carter

In the past week there have been a number of tributes to Professor Bob Carter, retired Professor of Geology and leading climate sceptic. This includes Jo Nova, James Delingpole, Steve McIntyre, Ian Pilmer at the GWPF, Joe Bast of The Heartland Institute and E. Calvin Beisner of Cornwall Alliance. In complete contrast William Connolley posted this comment in a post Science advances one funeral at a time

Actually A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it, but I’m allowed to paraphrase in titles. And anyway he said it in German, naturally. Today brings us news of another such advancement in science, with the reported death of Robert Carter.

Below is a comment I posted at Climate Scepticism

I believe Max Planck did have a point. In science people tenaciously hold onto ideas even if they have been falsified by the evidence or (as more often happens) they are supplanted by better ideas. Where the existing ideas form an institutionalized consensus, discrimination has occurred against those with the hypotheses can undermine that consensus. It can be that the new research paradigm can only gain prominence when the numbers dwindle in the old paradigm. As a result the advance of new knowledge and understanding is held back.

To combat this innate conservatism in ideas I propose four ideas.

First is to promote methods of evaluating competing theories that are independent of consensus or opinion. In pure science that is by conducting experiments that would falsify a hypothesis. In complex concepts, for which experiment is not possible and data is incomplete and of poor quality, like the AGW hypothesis or economic theories, comparative analysis needs to be applied based upon independent standards.

Second is to recognize institutional bias by promoting pluralism and innovation.

Third is to encourage better definition of concepts, more rigorous standards of data within the existing research paradigm to push the boundaries.

Fourth is to train people to separate scientific endeavours from belief systems, whether religious, political or ethical.

The problem for William Connolley is that all his efforts within climatology – such as editing Wikipedia to his narrow views, or helping set up Real Climate to save the Mannian Hockey Stick from exposure of its many flaws – are with enforcing the existing paradigm and blocking any challenges. He is part of the problem that Planck was talking about.

As an example of the narrow and dogmatic views that Connolley supports, here is the late Bob Carter on his major point about how beliefs in unprecedented human-caused warming are undermined by the long-term temperature proxies from ice core data. The video quality is poor, probably due to a lack of professional funding that Connolley and his fellow-travellers fought so hard to deny.

Kevin Marshall

Climate Interactive’s Bogus INDC Forecast

Summary

Joe Romm wrote a post in early November claiming UNFCCC Executive Secretary Christiana Figueres had misled the public in claiming that the “INDCs have the capability of limiting the forecast temperature rise to around 2.7 degrees Celsius by 2100”. Using Climate Interactive’s figures Romm claims the correct figure is 3.5°C. That Romm had one of two sources of the 2.7°C staring at him is a side issue. The major question is how Climate Interactive can achieve a full 1.0°C reduction in expected temperature rise in 2100 and a reduction of 40% in 2100 GHG emissions from pledges covering the period 2015, when the UNFCCC estimates will have a much smaller impact in 2030? Looking at the CO2 emissions, which account for 75-80% of GHG emissions, I have found the majority answer. For OECD countries where emissions per capita have been stable or falling for decades, the “No Action” scenario forecasts that they will rise for decades. For Russia and China, where per capita emissions are likely to peak before 2030 without any policy action, the “No Action” scenario forecasts that they will rise for decades. This is largely offset by Climate Interactive assuming that both emissions and economic growth in India and Africa (where there are no real attempts to control emissions) will stagnate in the coming decades. Just by making more reasonable CO2 emissions forecasts for the OECD, Russia and China can account for half of the claimed 2100 reduction in GHG emissions from the INDC. Climate Interactive’s “No Action” scenario is bogus.

 

Joe Romm’s use of the Climate Interactive projection

A couple of months ago, prior to the COP21 Paris climate talks, Joe Romm at Climate Progress criticized the claim made in a press release by UNFCCC Executive Secretary Christiana Figueres:

The INDCs have the capability of limiting the forecast temperature rise to around 2.7 degrees Celsius by 2100, by no means enough but a lot lower than the estimated four, five, or more degrees of warming projected by many prior to the INDCs

Romm’s note to the media is

If countries go no further than their current global climate pledges, the earth will warm a total of 3.5°C by 2100.

At a basic level Romm should have done some proper research. As I found out, there are two sources of the claim that are tucked away at the end of a technical appendix to the UNFCCC Synthesis report on the aggregate effect of INDCs. One of these is Climate Action Tracker. On their home page they have a little thermometer which shows the 2.7°C figure. Romm would have seen this, as he refers in the text to CAT’s page on China. The significance may not have registered.

However, the purpose of this post is not to criticize Romm, but the Climate Interactive analysis that Romm uses as the basis of his analysis. Is the Climate Interactive Graph (reproduced in Figure 1) a reasonable estimate of the impact of the INDC submissions (policy pledges) on global emissions?1

Figure 1. Climate Interactive’s graph of impact of the INDC submissions to 2100

What struck me as odd when I first saw this graph was how the INDCs could make such a large impact beyond the 2015-2030 timeframe that they covered when the overall impact was fairly marginal within that timeframe. This initial impression is confirmed by the UNFCCC’s estimate of the INDCs

Figure 2. UNFCCC’s estimate of emissions impact of the INDCs, with the impact shown by the yellow bars. Original here.

There are two things that do not stack up. First is that the “No Action” scenario appears to be a fairly reasonable extrapolation of future emissions without policy. Second, and contrary to that is the first, is that the “Current INDCs” scenario does not make sense in terms of what I have read in the INDCs and is confirmed by the INDCs. To resolve this requires looking at the makeup of the “No Action” scenario. Climate Interactive usefully provide the model for others to do their own estimates,2 With the “User Reference Scenario” giving the “no action” data3, split by type of greenhouse gas and into twenty regions or countries. As about 75-80% of emissions with the model are CO2 Fossil Fuel emissions, I will just look at this area. For simplicity I have also reduced the twenty regions or countries into just seven. That is USA, Other OECD, Russia, China, India, Africa and Rest of the World. There are also lots of ways to look at the data, but some give better understanding of the data than others. Climate Interactive also have population estimates. Population changes over a long period can themselves result in changed emissions, so looking at emissions per capita gives a better sense of the reasonableness of the forecast. I have graphed the areas in figure 3 for the historical period 1970-2010 and the forecast period 2020-2100.

Figure 3 : Fossil Fuel Emissions per capita for six regions from the Climate Interactive “No Action” Scenario.

Understanding the CO2 emissions forecasts

In the USA, emissions per capita peaked at the time of 1973 oil embargo. Since then they have declined slightly. There are a number of reasons for this.

First, higher oil prices gave the economic incentives to be more efficient in usage of oil. In cars there have been massive improvements in fuel efficiency since that time. Industry has also used energy more efficiently. Second, there has been a growth in the use of nuclear power for strategic reasons more than economic. Third is that some of the most energy intensive industries have shifted to other countries, particularly steel and chemicals. Fourth, is that growth in developed countries is mostly in the service sector, whereas growth in developing countries is mostly in manufacturing. Manufacturing tends to have much higher energy usage per unit of output than services. Fifth, is that domestic energy usage is from cars and power for the home. In an emerging economy energy usage will rise rapidly as a larger proportion of the population acquire cars and full heating and lighting systems in the home. Growth is much slower once most households have these luxuries. Sixth is that in the near future emissions might continue to fall with the development of shale gas, with its lower emissions per unit of power than from coal.

I therefore cannot understand why anyone would forecast increasing emissions per capita in the near future, when they have been stable or falling in for decades. Will everyone start to switch to less efficient cars? When these forecasts were made oil was at $100 a barrel levels, and many thought peak oil was upon us. Would private sector companies abandon more efficient energy usage for less efficient and higher cost usage? The USA may abandon nuclear power and shift back to coal for political reasons. But in all forms of energy, production and distribution is likely to continue to become more efficient in all forms.

In the rest of the OECD, there are similar patterns. In Europe energy usage was never as high. In some countries without policy CO2 emissions may rise slightly. In Germany they are replacing nuclear power stations with coal for instance. But market incentives will increase energy efficiency and manufacturing will continue to shift to emerging nations. Again, there appears no reason for a steady increase in emissions per capita to increase in the future.

Russia has a slightly different recent past. Communist central planning was highly inefficient and lead to hugely inefficient energy usage. With the collapse of communism, energy usage fell dramatically. Since then emissions have been increasing, but more slowly than the economy as a whole. Emissions will peak again in a couple of decades. This will likely be at a lower level than in the USA in 1970, despite the harsher climate, as Russia will benefit from technological advances in the intervening period. There is no reason for emissions to go on increasing at such a rapid rate.4

China has recently had phenomenal growth rates. According to UN data, from 1990 to 2012, economic growth averaged 10.3% per annum and CO2 emissions 6.1%. In the not too distant future economic growth will slow as per capita income approaches rich country levels, and emissions growth will slow or peak. But the Climate Interactive forecast has total emissions only peaking in 2090. The reason for China’s and Russia’s forecast per capita emissions exceeding those of the USA is likely due to a failure to allow for population changes. In USA population is forecast to grow, whilst in China and Russia population is forecast to fall.

India has the opposite picture. In recently years economic and CO2 emissions growth has taken off. Current policies of Prime Minister Narendra Modi are to accelerate these growth rates. But in the Climate Interactive forecast growth, economic growth and CO2 emissions growth plummet in the near future. Economic growth is already wrong. I am writing on 30/12/15. To meet the growth forecast for 2010-2015, India’s GDP will need to drop by 20% in the next 24 hours.5

For the continent of Africa, there have been encouraging growth signs in the last few years, after decades when many countries saw stagnation or even shrinking economies. Climate Interative forecasts similar growth to India, but with a forecasts of rapid population growth, the emissions per capita will hardly move.

Revised CO2 emissions forecasts

It is extremely difficult and time consuming to make more accurate CO2 emissions forecasts. As a shortcut, I will look at the impact of revisions on 2100, then at the impact on the effect of the INDCs. This is laid out in Figure 4

Figure 4 : Revised Forecast CO2 Emissions from Fossil Fuels

The first three columns in pale lilac are for CO2 emissions per capita calculated, from the Climate Interactive data. In the 2100 Revised column are more realistic estimates for reasons discussed in the text. In the orange part of the table are the total forecast 2100 Climate Interactive figures for population and CO2 emissions from fossil fuels. In darker orange is the revised emissions forecast (emissions per capita multiplied by forecast population) and the impact of the revision. Overall the forecast is 10.2GtCO2e lower, as no calculation has been made for the rest of the world. To balance back requires emissions of 11.89 tonnes per capita for 2.9 billion people. As ROW includes such countries as Indonesia, Bangladesh, Iran, Vietnam, Brazil and Argentina this figure might be unreasonable 85 years from now.

The revised impact on the INDC submissions

The INDC submissions can be broken down.

The USA, EU, Japan and Australia all have varying levels of cuts to total emissions. So for the OECD as a whole I estimate Climate Interactive over estimates the impact of the INDCs by 8.4GtCO2e

The Russian INDC pledge it is unclear, but it seems to be saying that emissions will peak before 2030 at below 1990 levels6. As my revised forecast is above this level, I estimate Climate Interactive over estimates the impact of the INDCs by 3.2GtCO2e

The Chinese INDC claims pledges that its emissions will have peaked by 2030. This will have happened anyway and at around 10-12 tonnes per capita. I have therefore assumed that emissions will stay constant from 2030 to 2100 whilst the population is falling. Therefore I estimate that Climate Interactive over estimates the impact of the INDCs by 19.5GtCO2e

Overall for these areas the overestimation is around 31 GtCO2e. Instead of 63.5GtCO2e forecast for these countries for 2100 it should be nearer 32.5GtCO2e. This is about half the total 2100 reduction that Climate Interactive claims that the INDC submission will make from all types of greenhouse gases. A more rigorous forecast may have lower per capita emissions in the OECD and China. There may be other countries where similar forecast issues of CO2 emissions might apply. In addition, in note 7 I briefly look at the “No Action” CH4 emissions, the second largest greenhouse gas. There appear to be similar forecast issued there.

In summary, the make-up of the CO2 emissions “No Action” forecast is bogus. It deviates from an objective and professional forecast in a way that grossly exaggerates the impact of any actions to control GHG emissions, or even pledges that constitute nothing more than saying what would happen anyway.

Notes

  1. The conversion of a given quantity of emissions into average surface temperature changes is outside the scope of this article. Also we will assume that all policy pledges will be fully implemented.
  2. On the Home page use the menu for Tools/C-ROADS. Then on the right hand side select “Download C-ROADS”. Install the software. Run the software. Click on “Create New Run” in the centre of the screen.


    This will generate a spreadsheet “User Scenario v3 026.xls”. The figures I use are in the User Reference Scenario tab. The software version I am working from is v4.026v.071.

  3. The “User Reference Scenario” is claimed to be RCP 8.5. I may post at another time on my reconciliation between the original and the Climate Interactive versions.
  4. The forecast estimates for economic growth and emissions for Russia look quite bizarre when the 5 year percentage changes are graphed.


    I cannot see any reason for growth rates to fall to 1% p.a in the long term. But this is the situation with most others areas as well. Nor can I think of a reason for emissions growth rates to increase from 2030 to 2055, or after 2075 expect as a contrivance for consistency purposes.

  5. The forecast estimates for economic growth and emissions for India look even more bizarre than for Russia when the 5 year percentage changes are graphed.


    I am writing on 30/12/15. To meet the growth forecast for 2010-2015, India’s GDP will need to drop by 20% in the next 24 hours. From 2015 to 2030, the period of the INDC submissions, CO2 emissions are forecast to grow by 8.4%. India’s INDC submission implies GHG emissions growth from 2014 to 2030 of 90% to 100%. Beyond that India is forecast to stagnate to EU growth rates, despite being a lower to middle income country. Also, quite contrary to Russia, emissions growth rates are always lower than economic growth rates.

  6. The Russian Federation INDC states

    Limiting anthropogenic greenhouse gases in Russia to 70-75% of 1990 levels by the year 2030 might be a long-term indicator, subject to the maximum possible account of absorbing capacity of forests.

    This appears as ambiguous, but could be taken as meaning a long term maximum.

  7. CH4 (Methane) emissions per Capita

    I have quickly done a similar analysis of methane emissions per capita as in Figure 2 for CO2 emissions. The scale this time is in kilos, not tonnes.

    There are similarities

  • OECD emissions had been falling but are forecast to rise. The rise is not as great as for CO2.
  • In Russia and China emissions are forecast to rise. In Russia this is by a greater amount than for CO2, in China by a lesser amount.
  • In Africa, per capita emissions are forecast to fall slightly. Between 2010, CH4 emissions are forecast to rise 3.1 times and population by 4.3 times.
  • In both the USA and Other OECD (a composite of CI’s categories) total CH4 emissions are forecast in 2100 to be 2.778 times higher than in 2010. In both China and India total CH4 emissions are forecast in 2100 to be 2.420 times higher than in 2010.