Climatic Temperature Variations

In the previous post I identified that the standard definition of temperature homogenisation assumes that there are little or no variations in climatic trends within the homogenisation area. I also highlighted specific instances of where this assumption has failed. However, the examples may be just isolated and extreme instances, or there might be other, offsetting instances so the failures could cancel each other out without a systematic bias globally. Here I explore why this assumption should not be expected to hold anywhere, and how it may have biased the picture of recent warming. After a couple of proposals to test for this bias, I look at alternative scenarios that could bias the global average temperature anomalies. I concentrate on the land surface temperatures, though my comments may also have application to the sea surface temperature data sets.


Comparing Two Recent Warming Phases

An area that I am particularly interested in is the relative size of the early twentieth century warming compared to the more recent warming phase. This relative size, along with the explanations for those warming periods gives a route into determining how much of the recent warming was human caused. Dana Nuccitelli tried such an explanation at skepticalscience blog in 20111. Figure 1 shows the NASA Gistemp global anomaly in black along with a split be eight bands of latitude. Of note are the polar extremes, each covering 5% of the surface area. For the Arctic, the trough to peak of 1885-1940 is pretty much the same as the trough to peak from 1965 to present. But in the earlier period it is effectively cancelled out by the cooling in the Antarctic. This cooling, I found was likely caused by use of inappropriate proxy data from a single weather station3.

Figure 1. Gistemp global temperature anomalies by band of latitude2.

For the current issue, of particular note is the huge variation in trends by latitude from the global average derived from the homogenised land and sea surface data. Delving further, GISS provide some very useful maps of their homogenised and extrapolated data4. I compare two identical time lengths – 1944 against 1906-1940 and 2014 against 1976-2010. The selection criteria for the maps are in figure 2.

Figure 2. Selection criteria for the Gistemp maps.

Figure 3. Gistemp map representing the early twentieth surface warming phase for land data only.

Figure 4. Gistemp map representing the recent surface warming phase for land data only.

The later warming phase is almost twice the magnitude of, and has much the better coverage than, the earlier warming. That is 0.43oC against 0.24oC. In both cases the range of warming in the 250km grid cells is between -2oC and +4oC, but the variations are not the same. For instance, the most extreme warming in both periods is at the higher latitudes. But, with the respect to North America in the earlier period the most extreme warming is over the Northwest Territories of Canada, whilst in the later period the most extreme warming is over Western Alaska, with the Northwest Territories showing near average warming. In the United States, in the earlier period there is cooling over Western USA, whilst in the later period there is cooling over much of Central USA, and strong warming in California. In the USA, the coverage of temperature stations is quite good, at least compared with much of the Southern Hemisphere. Euan Mearns has looked at a number of areas in the Southern Hemisphere4, which he summarised on the map in Figure 5

Figure 5. Euan Mearns says of the above “S Hemisphere map showing the distribution of areas sampled. These have in general been chosen to avoid large centres of human population and prosperity.

For the current analysis Figure 6 is most relevant.

Figure 6. Euan Mearns’ says of the above “The distribution of operational stations from the group of 174 selected stations.

The temperature data for the earlier period is much sparser than for later period. Even where there is data available in the earlier period the temperature data could be based on a fifth of the number of temperature stations as the later period. This may exaggerate slightly the issue, as the coasts of South America and Eastern Australia are avoided.

An Hypothesis on the Homogenisation Impact

Now consider again the description of homogenisation Venema et al 20125, quoted in the previous post.


The most commonly used method to detect and remove the effects of artificial changes is the relative homogenization approach, which assumes that nearby stations are exposed to almost the same climate signal and that thus the differences between nearby stations can be utilized to detect inhomogeneities. In relative homogeneity testing, a candidate time series is compared to multiple surrounding stations either in a pairwise fashion or to a single composite reference time series computed for multiple nearby stations. (Italics mine)


The assumption of the same climate signal over the homogenisation will not apply where the temperature stations are thin on the ground. The degree to which homogenisation eliminates real world variations in trend could be, to some extent, inversely related to the density. Given that the density of temperature data points diminishes in most areas of the world rapidly when one goes back in time beyond 1960, homogenisation in the early warming period far more likely to be between climatically different temperature stations than in the later period. My hypothesis is that, relatively, homogenisation will reduce the early twentieth century warming phase compared the recent warming phase as in earlier period homogenisation will be over much larger areas with larger real climate variations within the homogenisation area.

Testing the Hypothesis

There are at least two ways that my hypothesis can be evaluated. Direct testing of information deficits is not possible.

First is to conduct temperature homogenisations on similar levels of actual data for the entire twentieth century. If done for a region, the actual data used in global temperature anomalies should be run for a region as well. This should show that the recent warming phase is post homogenisation is reduced with less data.

Second is to examine the relative size of adjustments to the availability of comparative data. This can be done in various ways. For instance, I quite like the examination of the Manaus Grid block record Roger Andrews did in a post The Worst of BEST6.

Counter Hypotheses

There are two counter hypotheses on temperature bias. These may undermine my own hypothesis.

First is the urbanisation bias. Euan Mearns in looking at temperature data of the Southern Hemisphere tried to avoid centres of population due to the data being biased. It is easy to surmise the lack of warming Mearns found in central Australia7 was lack of an urbanisation bias from the large cities on the coast. However, the GISS maps do not support this. Ronan and Michael Connolly8 of Global Warming Solved claim that the urbanisation bias in the global temperature data is roughly equivalent to the entire warming of the recent epoch. I am not sure that the urbanisation bias is so large, but even if it were, it could be complementary to my hypothesis based on trends.

Second is that homogenisation adjustments could be greater the more distant in past that they occur. It has been noted (Steve Goddard in particular) that each new set of GISS adjustments adjusts past data. The same data set used to test my hypothesis above could also be utilized to test this hypothesis, by conducting homogenisations runs on the data to date, then only to 2000, then to 1990 etc. It could be that the earlier warming trend is somehow suppressed by homogenizing the most recent data, then working backwards through a number of iterations, each one using the results of the previous pass. The impact on trends that operate over different time periods, but converge over longer periods, could magnify the divergence and thus cause differences in trends decades in the past to be magnified. As such differences in trend appear to the algorithm to be more anomalous than in reality they actually are.

Kevin Marshall


  1. Dana Nuccitelli – What caused early 20th Century warming? 24.03.2011
  2. Source
  3. See my post Base Orcadas as a Proxy for early Twentieth Century Antarctic Temperature Trends 24.05.2015
  4. Euan Mearns – The Hunt For Global Warming: Southern Hemisphere Summary 14.03.2015. Area studies are referenced on this post.
  5. Venema et al 2012 – Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., Stepanek, P., Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti, M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P., and Brandsma, T.: Benchmarking homogenization algorithms for monthly data, Clim. Past, 8, 89-115, doi:10.5194/cp-8-89-2012, 2012.
  6. Roger Andrews – The Worst of BEST 23.03.2015
  7. Euan Mearns – Temperature Adjustments in Australia 22.02.2015
  8. Ronan and Michael Connolly – Summary: “Urbanization bias” – Papers 1-3 05.12.2013

Defining “Temperature Homogenisation”


The standard definition of temperature homogenisation is of a process that cleanses the temperature data of measurement biases to only leave only variations caused by real climatic or weather variations. This is at odds with GHCN & GISS adjustments which delete some data and add in other data as part of the homogenisation process. A more general definition is to make the data more homogenous, for the purposes of creating regional and global average temperatures. This is only compatible with the standard definition if assume that there are no real data trends existing within the homogenisation area. From various studies it is clear that there are cases where this assumption does not hold good. The likely impacts include:-

  • Homogenised data for a particular temperature station will not be the cleansed data for that location. Instead it becomes a grid reference point, encompassing data from the surrounding area.
  • Different densities of temperature data may lead to different degrees to which homogenisation results in smoothing of real climatic fluctuations.

Whether or not this failure of understanding is limited to a number of isolated instances with a near zero impact on global temperature anomalies is an empirical matter that will be the subject of my next post.


A common feature of many concepts involved with climatology, the associated policies and sociological analyses of non-believers, is a failure to clearly understand of the terms used. In the past few months it has become evident to me that this failure of understanding extends to term temperature homogenisation. In this post I look at the ambiguity of the standard definition against the actual practice of homogenising temperature data.

The Ambiguity of the Homogenisation Definition

The World Meteorological Organisation in its’ 2004 Guidelines on Climate Metadata and Homogenization1 wrote this explanation.

Climate data can provide a great deal of information about the atmospheric environment that impacts almost all aspects of human endeavour. For example, these data have been used to determine where to build homes by calculating the return periods of large floods, whether the length of the frost-free growing season in a region is increasing or decreasing, and the potential variability in demand for heating fuels. However, for these and other long-term climate analyses –particularly climate change analyses– to be accurate, the climate data used must be as homogeneous as possible. A homogeneous climate time series is defined as one where variations are caused only by variations in climate.

Unfortunately, most long-term climatological time series have been affected by a number of nonclimatic factors that make these data unrepresentative of the actual climate variation occurring over time. These factors include changes in: instruments, observing practices, station locations, formulae used to calculate means, and station environment. Some changes cause sharp discontinuities while other changes, particularly change in the environment around the station, can cause gradual biases in the data. All of these inhomogeneities can bias a time series and lead to misinterpretations of the studied climate. It is important, therefore, to remove the inhomogeneities or at least determine the possible error they may cause.

That is temperature homogenisation is necessary to isolate and remove what Steven Mosher has termed measurement biases2, from the real climate signal. But how does this isolation occur?

Venema et al 20123 states the issue more succinctly.

The most commonly used method to detect and remove the effects of artificial changes is the relative homogenization approach, which assumes that nearby stations are exposed to almost the same climate signal and that thus the differences between nearby stations can be utilized to detect inhomogeneities (Conrad and Pollak, 1950). In relative homogeneity testing, a candidate time series is compared to multiple surrounding stations either in a pairwise fashion or to a single composite reference time series computed for multiple nearby stations. (Italics mine)

Blogger …and Then There’s Physics (ATTP) partly recognizes these issues may exist in his stab at explaining temperature homogenisation4.

So, it all sounds easy. The problem is, we didn’t do this and – since we don’t have a time machine – we can’t go back and do it again properly. What we have is data from different countries and regions, of different qualities, covering different time periods, and with different amounts of accompanying information. It’s all we have, and we can’t do anything about this. What one has to do is look at the data for each site and see if there’s anything that doesn’t look right. We don’t expect the typical/average temperature at a given location at a given time of day to suddenly change. There’s no climatic reason why this should happen. Therefore, we’d expect the temperature data for a particular site to be continuous. If there is some discontinuity, you need to consider what to do. Ideally you look through the records to see if something happened. Maybe the sensor was moved. Maybe it was changed. Maybe the time of observation changed. If so, you can be confident that this explains the discontinuity, and so you adjust the data to make it continuous.

What if there isn’t a full record, or you can’t find any reason why the data may have been influenced by something non-climatic? Do you just leave it as is? Well, no, that would be silly. We don’t know of any climatic influence that can suddenly cause typical temperatures at a given location to suddenly increase or decrease. It’s much more likely that something non-climatic has influenced the data and, hence, the sensible thing to do is to adjust it to make the data continuous. (Italics mine)

The assumption of a nearby temperature stations have the same (or very similar) climatic signal, if true would mean that homogenisation would cleanse the data of the impurities of measurement biases. But there is only a cursory glance given to the data. For instance, when Kevin Cowtan gave an explanation of the fall in average temperatures at Puerto Casado neither he, nor anyone else, checked to see if the explanation stacked up beyond checking to see if there had been a documented station move at roughly that time. Yet the station move is at the end of the drop in temperatures, and a few minutes checking would have confirmed that other nearby stations exhibit very similar temperature falls5. If you have a preconceived view of how the data should be, then a superficial explanation that conforms to that preconception will be sufficient. If you accept the authority of experts over personally checking for yourself, then the claim by experts that there is not a problem is sufficient. Those with no experience of checking the outputs following processing of complex data will not appreciate the issues involved.

However, this definition of homogenisation appears to be different from that used by GHCN and NASA GISS. When Euan Mearns looked at temperature adjustments in the Southern Hemisphere and in the Arctic6, he found numerous examples in the GHCN and GISS homogenisations of infilling of some missing data and, to a greater extent, deleted huge chunks of temperature data. For example this graphic is Mearns’ spreadsheet of adjustments between GHCNv2 (raw data + adjustments) and the GHCNv3 (homogenised data) for 25 stations in Southern South America. The yellow cells are where V2 data exist V3 not; the greens cells V3 data exist where V2 data do not.

Definition of temperature homogenisation

A more general definition that encompasses the GHCN / GISS adjustments is of broadly making the data homogenous. It is not done by simply blending the data together and smoothing out the data. Homogenisation also adjusts anomalous data as a result of pairwise comparisons between local temperature stations, or in the case of extreme differences in the GHCN / GISS deletes the most anomalous data. This is a much looser and broader process than homogenisation of milk, or putting some food through a blender.

The definition I cover in more depth in the appendix.

The Consequences of Making Data Homogeneous

A consequence of cleansing the data in order to make it more homogenous gives a distinction that is missed by many. This is due to making the strong assumption that there are no climatic differences between the temperature stations in the homogenisation area.

Homogenisation is aimed at adjusting for the measurement biases to give a climatic reading for the location where the temperature station is located that is a closer approximation to what that reading would be without those biases. With the strong assumption, making the data homogenous is identical to removing the non-climatic inhomogeneities. Cleansed of these measurement biases the temperature data is then both the average temperature readings that would have been generated if the temperature station had been free of biases and a representative location for the area. This latter aspect is necessary to build up a global temperature anomaly, which is constructed through dividing the surface into a grid. Homogenisation, in the sense of making the data more homogenous by blending is an inappropriate term. All what is happening is adjusting for anomalies within the through comparisons with local temperature stations (the GHCN / GISS method) or comparisons with an expected regional average (the Berkeley Earth method).

But if the strong assumption does not hold, homogenisation will adjust these climate differences, and will to some extent fail to eliminate the measurement biases. Homogenisation is in fact made more necessary if movements in average temperatures are not the same and the spread of temperature data is spatially uneven. Then homogenisation needs to not only remove the anomalous data, but also make specific locations more representative of the surrounding area. This enables any imposed grid structure to create an estimated average for that area through averaging the homogenized temperature data sets within the grid area. As a consequence, the homogenised data for a temperature station will cease to be a closer approximation to what the thermometers would have read free of any measurement biases. As homogenisation is calculated by comparisons of temperature stations beyond those immediately adjacent, there will be, to some extent, influences of climatic changes beyond the local temperature stations. The consequences of climatic differences within the homogenisation area include the following.

  • The homogenised temperature data for a location could appear largely unrelated to the original data or to the data adjusted for known biases. This could explain the homogenised Reykjavik temperature, where Trausti Jonsson of the Icelandic Met Office, who had been working with the data for decades, could not understand the GHCN/GISS adjustments7.
  • The greater the density of temperature stations in relation to the climatic variations, the less that climatic variations will impact on the homogenisations, and the greater will be the removal of actual measurement biases. Climate variations are unlikely to be much of an issue with the Western European and United States data. But on the vast majority of the earth’s surface, whether land or sea, coverage is much sparser.
  • If the climatic variation at a location is of different magnitude to that of other locations in the homogenisation area, but over the same time periods and direction, then the data trends will be largely retained. For instance, in Svarlbard the warming temperature trends of the early twentieth century and from the late 1970s were much greater than elsewhere, so were adjusted downwards8.
  • If there are differences in the rate of temperature change, or the time periods for similar changes, then any “anomalous” data due to climatic differences at the location will be eliminated or severely adjusted, on the same basis as “anomalous” data due to measurement biases. For instance in large part of Paraguay at the end of the 1960s average temperatures by around 1oC. Due to this phenomena not occurring in the surrounding areas both the GHCN and Berkeley Earth homogenisation processes adjusted out this trend. As a consequence of this adjustment, a mid-twentieth century cooling in the area was effectively adjusted to out of the data9.
  • If a large proportion of temperature stations in a particular area have consistent measurement biases, then homogenisation will retain those biases, as it will not appear anomalous within the data. For instance, much of the extreme warming post 1950 in South Korea is likely to have been as a result of urbanization10.

Other Comments

Homogenisation is just part of the process of adjusting data for the twin purposes of attempting to correct for biases and building a regional and global temperature anomalies. It cannot, for instance, correct for time of observation biases (TOBS). This needs to be done prior to homogenisation. Neither will homogenisation build a global temperature anomaly. Extrapolating from the limited data coverage is a further process, whether for fixed temperature stations on land or the ship measurements used to calculate the ocean surface temperature anomalies. This extrapolation has further difficulties. For instance, in a previous post11 I covered a potential issue with the Gistemp proxy data for Antarctica prior to permanent bases being established on the continent in the 1950s. Making the data homogenous is but the middle part of a wider process.

Homogenisation is a complex process. The Venema et al 20123 paper on the benchmarking of homogenisation algorithms demonstrates that different algorithms produce significantly different results. What is clear from the original posts on the subject by Paul Homewood and the more detailed studies by Euan Mearns and Roger Andrews at Energy Matters, is that the whole process of going from the raw monthly temperature readings to the final global land surface average trends has thrown up some peculiarities. In order to determine whether they are isolated instances that have near zero impact on the overall picture, or point to more systematic biases that result from the points made above, it is necessary to understand the data available in relation to the overall global picture. That will be the subject of my next post.

Kevin Marshall


  1. GUIDELINES ON CLIMATE METADATA AND HOMOGENIZATION by Enric Aguilar, Inge Auer, Manola Brunet, Thomas C. Peterson and Jon Wieringa
  2. Steven Mosher – Guest post : Skeptics demand adjustments 09.02.2015
  3. Venema et al 2012 – Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., Stepanek, P., Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti, M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P., and Brandsma, T.: Benchmarking homogenization algorithms for monthly data, Clim. Past, 8, 89-115, doi:10.5194/cp-8-89-2012, 2012.
  4. …and Then There’s Physics – Temperature homogenisation 01.02.2015
  5. See my post Temperature Homogenization at Puerto Casado 03.05.2015
  6. For example

    The Hunt For Global Warming: Southern Hemisphere Summary

    Record Arctic Warmth – in 1937

  7. See my post Reykjavik Temperature Adjustments – a comparison 23.02.2015
  8. See my post RealClimate’s Mis-directions on Arctic Temperatures 03.03.2015
  9. See my post Is there a Homogenisation Bias in Paraguay’s Temperature Data? 02.08.2015
  10. NOT A LOT OF PEOPLE KNOW THAT (Paul Homewood) – UHI In South Korea Ignored By GISS 14.02.2015

Appendix – Definition of Temperature Homogenisation

When discussing temperature homogenisations, nobody asks what the term actual means. In my house we consume homogenised milk. This is the same as the pasteurized milk I drank as a child except for one aspect. As a child I used to compete with my siblings to be the first to open a new pint bottle, as it had the cream on top. The milk now does not have this cream, as it is blended in, or homogenized, with the rest of the milk. Temperature homogenizations are different, involving changes to figures, along with (at least with the GHCN/GISS data) filling the gaps in some places and removing data in others1.

But rather than note the differences, it is better to consult an authoritative source. From, the definitions of homogenize are:-

verb (used with object), homogenized, homogenizing.

  1. to form by blending unlike elements; make homogeneous.
  2. to prepare an emulsion, as by reducing the size of the fat globules in (milk or cream) in order to distribute them equally throughout.
  3. to make uniform or similar, as in composition or function:

    to homogenize school systems.

  4. Metallurgy. to subject (metal) to high temperature to ensure uniform diffusion of components.

Applying the dictionary definitions, data homogenization in science is not about blending various elements together, nor about additions or subtractions from the data set, or adjusting the data. This is particularly true in chemistry.

For UHCN and NASA GISS temperature data homogenization involves removing or adjusting elements in the data that are markedly dissimilar from the rest. It can also mean infilling data that was never measured. The verb homogenize does not fit the processes at work here. This has led to some, like Paul Homewood, to refer to the process as data tampering or worse. A better idea is to look further at the dictionary.

Again from, the first two definitions of the adjective homogeneous are:-

  1. composed of parts or elements that are all of the same kind; not heterogeneous:

a homogeneous population.

  1. of the same kind or nature; essentially alike.

I would suggest that temperature homogenization is a loose term for describing the process of making the data more homogeneous. That is for smoothing out the data in some way. A false analogy is when I make a vegetable soup. After cooking I end up with a stock containing lumps of potato, carrot, leeks etc. I put it through the blender to get an even constituency. I end up with the same weight of soup before and after. A similar process of getting the same after homogenization as before is clearly not what is happening to temperatures. The aim of making the data homogenous is both to remove anomalous data and blend the data together.

Ivanpah Solar Project Still Failing to Achieve Potential

Paul Homewood yesterday referred to a Marketwatch report titled “High-tech solar projects fail to deliver.” This was reposted at Tallbloke.

Marketwatch looks at the Ivanpah solar project. They comment

The $2.2 billion Ivanpah solar power project in California’s Mojave Desert is supposed to be generating more than a million megawatt-hours of electricity each year. But 15 months after starting up, the plant is producing just 40% of that, according to data from the U.S. Energy Department.

I looked at the Ivanpah solar project last fall, when the investors applied for a $539million federal grant to help pay off a $1.5 billion federal loan. One of the largest investors was Google, who at the end of 2013 had Cash, Cash Equivalents & Marketable Securities of $58,717million, $10,000million than the year before.

Technologically the Ivanpah plant seems impressive. It is worth taking a look at the website.

That might have been the problem. The original projections were for 1065,000 MWh annually from a 392 MW nameplate implying a planned output of 31% of capacity. When I look at the costings on Which? for solar panels on the roof of a house, they assume just under 10% of capacity. Another site, Wind and Sun UK, say

1 kWp of well sited PV array in the UK will produce 700-800 kWh of electricity per year.

That is around 8-9.5% of capacity. Even considering the technological superiority of the project and the climatic differences, three times is a bit steep, although 12.5% (40% of 31%) is very low. From Marketwatch some of the difference is can be explained by

  • Complex equipment constantly breaking down
  • Optimization of complex new technologies
  • Steam pipes leaking due to vibrations
  • Generating the initial steam takes longer than expected
  • It is cloudier than expected

However, even all of this cannot account for the output only being at 40% of expected. With the strong sun of the desert I would expect daily output to never exceed 40% of theoretical, as it is only daylight for 50% of the time, and just after sunrise and before sunset the sun is less strong than at midday. As well as the teething problems with complex technology, it appears that the engineers were over optimistic. A lack of due diligence in appraising the scheme – a factor common to many large scale Government backed initiatives – will have let the engineers have the finance for a fully scaled-up version of what should have been a small-scale project to prove the technology.