Understanding GISS Temperature Adjustments

A couple of weeks ago something struck me as odd. Paul Homewood had been going on about all sorts of systematic temperature adjustments, showing clearly that the past has been cooled between the UHCN “raw data” and the GISS Homogenised data used in the data sets. When I looked at eight stations in Paraguay, at Reykjavik and at two stations on Spitzbergen I was able to corroborate this result. Yet Euan Mearns has looked at groups of stations in central Australia and Iceland, in both finding no warming trend between the raw and adjusted temperature data. I thought that Mearns must be wrong, so when he published on 26 stations in Southern Africa1, I set out to evaluate those results, to find the flaw. I have been unable to fully reconcile the differences, but the notes I have made on the Southern African stations may enable a greater understanding of temperature adjustments. What I do find is that clear trends in the data across a wide area have been largely removed, bringing the data into line with Southern Hemisphere trends. The most important point to remember is that looking at data in different ways can lead to different conclusions.

Net difference and temperature adjustments

I downloaded three lots of data – raw, GCHNv3 and GISS Homogenised (GISS H), then replicated Mearns’ method of calculating temperature anomalies. Using 5 year moving averages, in Chart 1 I have mapped the trends in the three data sets.

There is a large divergence prior to 1900, but for the twentieth century the warming trend is not excessively increased. Further, the warming trend from around 1900 is about half of that in the GISTEMP Southern Hemisphere or global anomalies. Looked in this way Mearns would appear to have a point. But there has been considerable downward adjustment of the early twentieth century warming, so Homewood’s claim of cooling the past is also substantiated. This might be the more important aspect, as the adjusted data makes the warming since the mid-1970s appear unusual.

Another feature is that the GCHNv3 data is very close to the GISS Homogenised data. So in looking the GISS H data used in the creation of the temperature data sets is very much the same as looking at GCHNv3 that forms the source data for GISS.

But why not mention the pre-1900 data where the divergence is huge?

The number of stations gives a clue in Chart 2.

It was only in the late 1890s that there are greater than five stations of raw data. The first year there are more data points left in than removed is 1909 (5 against 4).

Removed data would appear to have a role in the homogenisation process. But is it material? Chart 3 graphs five year moving averages of raw data anomalies, split between the raw data removed and retained in GISS H, along with the average for the 26 stations.

Where there are a large number of data points, it does not materially affect the larger picture, but does remove some of the extreme “anomalies” from the data set. But where there is very little data available the impact is much larger. That is particularly the case prior to 1910. But after 1910, any data deletions pale into insignificance next to the adjustments.

The Adjustments

I plotted the average difference between the Raw Data and the adjustment, along with the max and min values in Chart 4.

The max and min of net adjustments are consistent with Euan Mearns’ graph “safrica_deltaT” when flipped upside down and made back to front. It shows a difficulty of comparing adjusted, where all the data is shifted. For instance the maximum figures are dominated by Windhoek, which I looked at a couple of weeks ago. Between the raw data and the GISS Homogenised there was a 3.6oC uniform increase. There were a number of other lesser differences that I have listed in note 3. Chart 5 shows the impact of adjusting the adjustments is on both the range of the adjustments and the pattern of the average adjustments.

Comparing this with this average variance between the raw data and the GISS Homogenised shows the closer fit if the adjustments to the variance. Please note the difference in scale on Chart 6 from the above!

In the earlier period has by far the most deletions of data, hence the lack of closeness of fit between the average adjustment and average variance. After 1945, the consistent pattern of the average adjustment being slightly higher than the average variance is probably due to a light touch approach on adjustment corrections than due to other data deletions. The might be other reasons as well for the lack of fit, such as the impact of different length of data sets on the anomaly calculations.

Update 15/03/15

Of note is that the adjustments in the early 1890s and around 1930 is about three times the size of the change in trend. This might be partly due to zero net adjustments in 1903 and partly due to the small downward adjustments in post 2000.

The consequences of the adjustments

It should be remembered that GISS use this data to create the GISTEMP surface temperature anomalies. In Chart 7 I have amended Chart 1 to include Southern Hemisphere annual mean data on the same basis as the raw data and GISS H.

It seems fairly clear that the homogenisation process has achieved bringing the Southern Africa data sets into line with the wider data sets. Whether the early twentieth century warming and mid-century cooling are outliers that have been correctly cleansed is a subject for further study.

What has struck me in doing this analysis is that looking at individual surface temperature stations becomes nonsensical, as they are grid reference points. Thus comparing the station moves for Reykjavik with the adjustments will not achieve anything. The implications of this insight will have to wait upon another day.

Kevin Marshall

Notes

1. 26 Data sets

The temperature stations, with the periods for the raw data are below.

Location

Lat

Lon

ID

Pop.

Years

Harare

17.9 S

31.1 E

156677750005

601,000

1897 – 2011

Kimberley

28.8 S

24.8 E

141684380004

105,000

1897 – 2011

Gwelo

19.4 S

29.8 E

156678670010

68,000

1898 – 1970

Bulawayo

20.1 S

28.6 E

156679640005

359,000

1897 – 2011

Beira

19.8 S

34.9 E

131672970000

46,000

1913 – 1991

Kabwe

14.4 S

28.5 E

155676630004

144,000

1925 – 2011

Livingstone

17.8 S

25.8 E

155677430003

72,000

1918 – 2010

Mongu

15.2 S

23.1 E

155676330003

< 10,000

1923 – 2010

Mwinilunga

11.8 S

24.4 E

155674410000

< 10,000

1923 – 1970

Ndola

13.0 S

28.6 E

155675610000

282,000

1923 – 1981

Capetown Safr

33.9 S

18.5 E

141688160000

834,000

1880 – 2011

Calvinia

31.5 S

19.8 E

141686180000

< 10,000

1941 – 2011

East London

33.0 S

27.8 E

141688580005

127,000

1940 – 2011

Windhoek

22.6 S

17.1 E

132681100000

61,000

1921 – 1991

Keetmanshoop

26.5 S

18.1 E

132683120000

10,000

1931 – 2010

Bloemfontein

29.1 S

26.3 E

141684420002

182,000

1943 – 2011

De Aar

30.6 S

24.0 E

141685380000

18,000

1940 – 2011

Queenstown

31.9 S

26.9 E

141686480000

39,000

1940 – 1991

Bethal

26.4 S

29.5 E

141683700000

30,000

1940 – 1991

Antananarivo

18.8 S

47.5 E

125670830002

452,000

1889 – 2011

Tamatave

18.1 S

49.4 E

125670950003

77,000

1951 – 2011

Porto Amelia

13.0 S

40.5 E

131672150000

< 10,000

1947 – 1991

Potchefstroom

26.7 S

27.1 E

141683500000

57,000

1940 – 1991

Zanzibar

6.2 S

39.2 E

149638700000

111,000

1880 – 1960

Tabora

5.1 S

32.8 E

149638320000

67,000

1893 – 2011

Dar Es Salaam

6.9 S

39.2 E

149638940003

757,000

1895 – 2011

2. Temperature trends

To calculate the trends I used the OLS method, both from the formula and using the EXCEL “LINEST” function, getting the same answer each time. If you are able please check my calculations. The GISTEMP Southern Hemisphere and global data can be accessed direct from the NASA GISS website. The GISTEMP trends are from the skepticalscience trends tool. My figures are:-

3. Adjustments to the Adjustments

Location

Recent adjustment

Other adjustment

Other Period
Antananarivo

0.50

 

 
Beira

 

0.10

Mid-70s + inter-war
Bloemfontein

0.70

 

 
Dar Es Salaam

0.10

 

 
Harare

 

1.10

About 1999-2002
Keetmanshoop

1.57

 

 
Potchefstroom

-0.10

 

 
Tamatave

0.39

 

 
Windhoek

3.60

 

 
Zanzibar

-0.80

 

 

Windhoek Temperature adjustments

At Euan Mean’s blog I made reference to my findings, posted in full last night, that in the Isfjord Radio weather station had adjustments that varied between +4.0oC in 1917 to -1.7oC in the 1950s. I challenged anyone to find bigger adjustments than that. Euan came back with the example of Windhoek in South Africa, claiming 5oC of adjustments between the “raw” and GISS homogenised data.

I cry foul, as the adjustments are throughout the data set. J

That is the whole of the data set has been adjusted up by about 4 oC!

However, comparing the “raw” with the GISS homogenised data, with 5 year moving averages, (alongside the net adjustments) there are some interesting features.

The overall temperatures have been adjusted up by around 4oC, but

  • From the start of the record in 1920 to 1939 the cooling has been retained, if not slightly amplified.
  • The warming from 1938 to 1947 of 1.5oC has been erased by a combination of deleting the 1940 to 1944 data and reducing the 1945-1948 adjustments by 1.4oC.
  • The 1945-1948 adjustments, along with random adjustments and deletion of data mostly remove the near 1.5oC of cooling from the late 1940s to mid-1950s and the slight rebound through to the early 1960s.
  • The early 1970s cooling and the warming to the end of the series in the mid-1980s is largely untouched.

The overall adjustments leave a peculiar picture that cannot be explained by a homogenisation algorithm. The cooling in the 1920s offsets the global trend. Deletion of data and the adjustments in the data counter the peak of warming in the early 1940s in the global data. Natural variations in the raw data between the late 1940s and 1970 appear to have been removed, then the slight early 1970s cooling and the subsequent warming in the raw data left alone. However, the raw data shows average temperatures in the 1980s to be around 0.8oC higher than in the early 1920s. The adjustments seem to have removed this.

This removal of the warming trend tends to disprove something else. There appears to be no clever conspiracy, with a secret set of true figures. Rather, there are a lot of people dipping in to adjusting adjusted data to their view of the world, but nobody really questioning the results. They have totally lost sight of what the real data actually is. If they have compared the final adjusted data with the raw data, then they realised that the adjustments had managed to have eliminated a warming trend of over 1 oC per century.

Kevin Marshall

RealClimate’s Mis-directions on Arctic Temperatures

Summary

Real Climate attempted to rebut the claims that the GISS temperature data is corrupted with unjustified adjustments by

  • Attacking the commentary of Christopher Booker, not the primary source of the allegations.
  • Referring readers instead to a dogmatic source who claims that only 3 stations are affected, something clearly contradicted by Booker and the primary source.
  • Alleging that the complaints are solely about cooling the past, uses a single counter example for Svarlbard of a GISS adjustment excessively warming the past compared to the author’s own adjustments.
  • However, compared to the raw data, the author’s adjustments, based on local knowledge were smaller than GISS, showing the GISS adjustments to be unjustified. But the adjustments bring the massive warming trend into line with (the still large) Reykjavik trend.
  • Examination of the site reveals that the Stevenson screen at Svarlbard airport is right beside the tarmac of the runway, with the heat from planes and the heat from snow-clearing likely affecting measurements. With increasing use of the airport over the last twenty years, it is likely the raw data trend should be reduced, but at an increasing adjustment trend, not decreasing.
  • Further, data from a nearby temperature station at Isfjord Radio reveals that the early twentieth century warming on Spitzbergen may have been more rapid and of greater magnitude. GISS Adjustments reduce that trend by up to 4 degrees, compared with just 1.7 degrees for the late twentieth century warming.
  • Questions arise how raw data for Isfjord Radio could be available for 22 years before the station was established, and how the weather station managed to keep on recording “raw data” between the weather station being destroyed and abandoned in 1941 and being re-opened in 1946.

Introduction

In climate I am used to mis-directions and turning, but in this post I may have found the largest temperature adjustments to date.

In early February, RealClimate – the blog of the climate science consensus – had an article attacking Christopher Booker in the Telegraph. It had strong similarities the methods used by anonymous blogger ….andthentheresphysics. In a previous post I provided a diagram to illustrate ATTP’s methods.


One would expect that a blog supported by the core of the climate scientific consensus would provide a superior defence than an anonymous blogger who censors views that challenge his beliefs. However, RealClimate may have dug an even deeper hole. Paul Homewood covered the article on February 12th, but I feel it only scratched the surface. Using the procedures outlined above I note similarities include:-

  • Attacking the secondary commentary, and not mentioning the primary sources.
  • Misleading statements that understate the extent of the problem.
  • Avoiding comparison of the raw and adjusted data.
  • Single counter examples that do not stand up.

Attacking the secondary commentary

Like ATTP, RealClimate attacked the same secondary source – Christopher Booker – but another article. True academics would have referred Paul Homewood, the source of the allegations.

Misleading statement about number of weather stations

The article referred to was by Victor Venema of Variable Variability. The revised title is “Climatologists have manipulated data to REDUCE global warming“, but the original title can be found from the link address – http://variable-variability.blogspot.de/2015/02/evil-nazi-communist-world-government.html

It was published on 10th February and only refers to Christopher Booker’s original article in the Telegraph article of 24th January without mentioning the author or linking. After quoting from the article Venema states:-

Three, I repeat: 3 stations. For comparison, global temperature collections contain thousands of stations. ……

Booker’s follow-up article of 7th February states:-

Following my last article, Homewood checked a swathe of other South American weather stations around the original three. ……

Homewood has now turned his attention to the weather stations across much of the Arctic, between Canada (51 degrees W) and the heart of Siberia (87 degrees E). Again, in nearly every case, the same one-way adjustments have been made, to show warming up to 1 degree C or more higher than was indicated by the data that was actually recorded.

My diagram above was published on the 8th February, and counted 29 stations. Paul Homewood’s original article on the Arctic of 4th February lists 19 adjusted sites. If RealClimate had actually read the cited article, they would have known that quotation was false in connection to the Arctic. Any undergraduate who made this mistake in an essay would be failed.

Misleading Counter-arguments

Øyvind Nordli – the Real Climate author – provides a counter example from his own research. He compares his adjustments of the Svarlbard, (which is did as part of temperature reconstruction for Spitzbergen last year) with those of GISS.

Clearly he is right in pointing out that his adjustments created a lower warming trend than those of GISS.

I checked the “raw data” with the “GISS Homogenised” for Svarlbard and compare with the Reykjavik data I looked at last week, as the raw data is not part of the comparison. To make them comparable, I created anomalies based on the raw data average of 2000-2009. I have also used a 5 year centred moving average.

The raw data is in dark, the adjusted data in light. For Reykjavik prior to 1970 the peaks in the data have been clearly constrained, making the warming since 1980 appear far more significant. For the much shorter Svarlbard data the total adjustments from GHCN and GISS reduce the warming trend by a full 1.7oC, bringing the warming trend into line with the largely unadjusted Reykjavik. The GHCN & GISS seem to be adjusted to a pre-conceived view of what the data should look like. What Nordli et. al have effectively done is to restore the trend present in the raw data. So Nordli et al, using data on the ground, has effectively reached a similar to conclusion to Trausti Jonsson of the Iceland Met Office. The adjustments made thousands of miles away in the United States by homogenisation bots are massive and unjustified. It just so happens that in this case it is in the opposite direction to cooling the past. I find it somewhat odd Øyvind Nordli, an expert on local conditions, should not challenge these adjustments but choose to give the opposite impression.

What is even worse is that there might be a legitimate reason to adjust downwards the recent warming. In 2010, Anthony Watts looked at the citing of the weather station at Svarlbard Airport. Photographs show it to right beside the runway. With frequent snow, steam de-icers will regularly pass, along with planes with hot exhausts. The case is there for a downward adjustment over the whole of the series, with an increasing trend to reflect the increasing aircraft movements. Tourism quintupled between 1991 and 2008. In addition, the University Centre in Svarlbad founded in 1993 now has 500 students.

Older data for Spitzbergen

Maybe the phenomenal warming in the raw data for Svarlbard is unprecedented, despite some doubts about the adjustments. Nordli et al 2014 is titled Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898-2012. Is a study that gathers together all the available data from Spitzbergen, aiming to create a composite temperature record from fragmentary records from a number of places around the Islands. From NASA GISS, I can only find Isfjord Radio for the earlier period. It is about 50km west of Svarlbard, so should give a similar shape of temperature anomaly. According to Nordli et al

Isfjord Radio. The station was established on 1 September 1934 and situated on Kapp Linne´ at the mouth of Isfjorden (Fig. 1). It was destroyed by actions of war in September 1941 but re-established at the same place in July 1946. From 30 June 1976 onwards, the station was no longer used for climatological purposes.

But NASA GISS has data from 1912, twenty-two years prior to the station citing, as does Berkeley Earth. I calculated a relative anomaly to Reykjavik based on 1930-1939 averages, and added the Isfjord Radio figures to the graph.

The portion of the raw data for Isfjord Radio, which seems to have been recorded before any thermometer was available, shows a full 5oC rise in the 5 year moving average temperature. The anomaly for 1917 was -7.8oC, compared with 0.6 oC in 1934 and 1.0 oC in 1938. For Svarlbard Airport lowest anomalies are -4.5 oC in 1976 and -4.7 oC in 1988. The peak year is 2.4 oC in 2006, followed by 1.5 oC in 2007. The total GHCNv3 and GISS adjustments are also of a different order. At the start of the Svarlbard series every month was adjusted up by 1.7. The Isfjord Radio 1917 data was adjusted up by 4.0 oC on average, and 1918 by 3.5 oC. February of 1916 & 1918 have been adjusted upwards by 5.4 oC.

So the Spitzbergen warming the trough to peak warming of 1917 to 1934 may have been more rapid and greater than in magnitude that the similar warming from 1976 to 2006. But from the adjusted data one gets the opposite conclusion.

Also we find from Nordli at al

During the Second World War, and also during five winters in the period 18981911, no observations were made in Svalbard, so the only possibility for filling data gaps is by interpolation.

The latest any data recording could have been made was mid-1941, and the island was not reoccupied for peaceful purposes until 1946. The “raw” GHCN data is actually infill. If it followed the pattern of Reykjavik – likely the nearest recording station – temperatures would have peaked during the Second World War, not fallen.

Conclusion

Real Climate should review their articles better. You cannot rebut an enlarging problem by referring to out-of-date and dogmatic sources. You cannot pretend that unjustified temperature adjustments in one direction are somehow made right by unjustified temperature adjustments in another direction. Spitzbergen is not only cold, it clearly experiences vast and rapid fluctuations in average temperatures. Any trend is tiny compared to these fluctuations.

Reykjavik Temperature Adjustments – a comparison

Summary

On 20th February, Paul Homewood made some allegations that the temperature adjustments for Reykjavík were not supported by any known reasons. The analysis was somewhat vague. I have looked into the adjustments by both the GHCN v3 and NASA GISS. The major findings, which support Homewood’s view, are:-

  • The GHCN v3 adjustments appear entirely arbitrary. They do not correspond to the frequent temperature relocations. Much of the period from 1901-1965 is cooled by a full one degree centigrade.
  • Even more arbitrary was the adjustments for the period 1939-1942. In years where there was no anomalous spike in the data, a large cool period was created.
  • Also, despite there being complete raw data, the GHCN adjusters decided to dismiss the data from 1926 and 1946.
  • The NASA GISS homogenisation adjustments were much smaller in magnitude, and to some extent partly offset the GHCN adjustments. The greatest warming was of the 1929-51 period.

The combined impact of the adjustments is to change the storyline from the data, suppressing the early twentieth century warming and massively reducing the mid-century cooling. As a result an impression is created that the significant warming since the 1980s is unprecedented.

 

Analysis of the adjustments

There are a number of data sets to consider. There is the raw data available from 1901 to 2011 at NASA GISS. Nick Stokes has confirmed that this is the same raw data issued by the Iceland Met Office, baring a few roundings. The adjustments made by the Iceland Met Office are unfortunately only available from 1948. Quite separate, is the Global Historical Climatology Network dataset (GHCN v3) from the US National Oceanic and Atmospheric Administration (NOAA) I accessed from NASA GISS, along with the GISS’s own homogenised data used to compile the GISTEMP global temperature anomaly.

The impact of the adjustments from the raw data is as follows

The adjustments by the Icelandic Met Office professionals with a detailed knowledge of the instruments and the local conditions, is quite varied from year-to-year and appears to impose no trend in the data. The impact of GCHN is to massively cool the data prior to 1965. Most years are by about a degree, more than the 0.7oC total twentieth century global average surface temperature increase. The pattern of adjustments has long periods of adjustments that are the same. The major reason could be relocations. Trausti Jonsson, Senior Meteorologist with the Iceland Met Office, has looked at the relocations. He has summarized in the graphic below, along with gaps in the data.

I have matched these relocations with the adjustments.

The relocation dates appear to have no impact on the adjustments. If it does affect the data, the wrong data must be used.

Maybe the adjustments reflect the methods of calculation? Trausti Jonsson says:-

I would again like to make the point that there are two distinct types of adjustments:

1. An absolutely necessary recalculation of the mean because of changes in the observing hours or new information regarding the diurnal cycle of the temperature. For Reykjavík this mainly applies to the period before 1924.

2. Adjustments for relocations. In this case these are mainly based on comparative measurements made before the last relocation in 1973 and supported by comparisons with stations in the vicinity. Most of these are really cosmetic (only 0.1 or 0.2 deg C). There is a rather large adjustment during the 1931 to 1945 period (- 0.4 deg C, see my blog on the matter – you should read it again:http://icelandweather.blog.is/blog/icelandweather/entry/1230185/). 
I am not very comfortable with this large adjustment – it is supposed to be constant throughout the year, but it should probably be seasonally dependent. The location of the station was very bad (on a balcony/rooftop).

So maybe there can be some adjustment prior to 1924, but nothing major after. There is also nothing in the this account, or in the more detailed history, that indicates a reason for the reduction in adjustments in 1917-1925, or the massive increase in negative adjustments in the period 1939-1942.

Further, there is nothing in the local conditions that I can see to then justify GISS imposing an artificial early twentieth century warming period. There are two possible non-data reasons. The first is due to software which homogenizes to the global pattern. The second is human intervention. The adjusters at GISS realised the folks at NOAA had been conspicuously over-zealous in their adjustments, so were trying to restore a bit of credibility to the data story.

 

The change in the Reykjavík data story

When we compare graphs of raw data to adjusted data, it is difficult to see the impact of adjustments on the trends. The average temperatures vary widely from year to year, masking the underlying patterns. As a rough indication I have therefore taken the average temperature anomaly per decade. The decades are as in common usage, so the 1970s is from 1970-1979. The first decade is actually 1901-1909, and for the adjusted data there are some years missing. The decade of 2000-2009 had no adjustments. The average temperature of 5.35oC was set to zero, to become the anomaly.

The warmest decade was the last decade of 2000-2009. Further, both the raw data (black) and the GISS Homogenised data (orange) show the 1930s to be the second warmest decade. However, whilst the raw data shows the 1930s to be just 0.05oC cooler than the 2000s, GISS estimates it to be 0.75oC cooler. The coolest decades are also different. The raw data shows the 1980s to be the coolest decade, whilst GISS shows the 1900s and the 1910s to be about 0.40oC cooler. The GHCN adjustments (green) virtually eliminate the mid-century cooling.

But adjustments still need to be made. Trausti Jonsson believes that the data prior to 1924 needs to be adjusted downwards to allow for biases in the time of day when readings were taken. This would bring the 1900s and the 1910s more into line with the 1980s, along with lowering the 1920s. The leap in temperatures from the 1910s to the 1930s becomes very similar to that from 1980s to the 2000s, instead of half the magnitude in the GHCNv3 data and two-thirds the magnitude in the GISS Homogenised data.

The raw data tell us there were two similar-sized fluctuations in temperature since 1900 of 1920s-1940s and from 1980s-2010s. In between there was a period cooling that almost entirely cancelled out the earlier warming period. The massive warming since the 1980s is not exceptional, though there might be some minor human influence if patterns are replicated elsewhere.

The adjusted data reduces the earlier warming period and the subsequent cooling that bottomed out in the 1980s. Using the GISS Homogenised data we get the impression of unprecedented warming closely aligned to the rise in greenhouse gas levels. As there is no reason for the adjustments from relocations, or from changes to the method of calculation, the adjustments would appear to be made to fit reality to the adjuster’s beliefs about the world.

Kevin Marshall

 

Is there a Homogenisation Bias in Paraguay’s Temperature Data?

Last month Paul Homewood at Notalotofpeopleknowthat looked at the temperature data for Paraguay. His original aim was to explain the GISS claims of 2014 being the hottest year.

One of the regions that has contributed to GISS’ “hottest ever year” is South America, particularly Brazil, Paraguay and the northern part of Argentina. In reality, much of this is fabricated, as they have no stations anywhere near much of this area…

….there does appear to be a warm patch covering Paraguay and its close environs. However, when we look more closely, we find things are not quite as they seem.

In “Massive Tampering With Temperatures In South America“, Homewood looked at the “three genuinely rural stations in Paraguay that are currently operating – Puerto Casado, Mariscal and San Juan.” A few days later in “All Of Paraguay’s Temperature Record Has Been Tampered With“, he looked at remaining six stations.

After identifying that all of the three rural stations currently operational in Paraguay had had huge warming adjustments made to their data since the 1950’s, I tended to assume that they had been homogenised against some of the nearby urban stations. Ones like Asuncion Airport, which shows steady warming since the mid 20thC. When I went back to check the raw data, it turns out all of the urban sites had been tampered with in just the same way as the rural ones.

What Homewood does not do is to check the data behind the graphs, to quantify the extent of the adjustment. This is the aim of the current post.

Warning – This post includes a lot of graphs to explain how I obtained my results.

Homewood uses comparisons of two graphs, which he helpful provides the links to. The raw GHCN data + UHSHCN corrections is available here up until 2011 only. The current after GISS homogeneity adjustment data is available here.

For all nine data sets that I downloaded both the raw and homogenised data. By simple subtraction I found the differences. In any one year, they are mostly the same for each month. But for clarity I selected a single month – October – the month of my wife’s birthday.

For the Encarnacion (27.3 S,55.8 W) data sets the adjustments are as follows.

In 1967 the adjustment was -1.3C, in 1968 +0.1C. There is cooling of the past.

The average adjustments for all nine data sets is as follows.

This pattern is broadly consistent across all data sets. These are the maximum and minimum adjustments.

However, this issue is clouded by the special adjustments required for the Pedro Juan CA data set. The raw data set has been patched from four separate files,

Removing does not affect the average picture.

But does affect the maximum and minimum adjustments. This is shows the consistency in the adjustment pattern.

The data sets are incomplete. Before 1941 there is only one data set – Ascuncion Aero. The count for October each year is as follows.

In recent years there are huge gaps in the data, but for the late 1960s when the massive switch in adjustments took place, there are six or seven pairs of raw and adjusted data.

Paul Homewood’s allegation that the past has been cooled is confirmed. However, it does not give a full understanding of the impact on the reported data. To assist, for the full year mean data, I have created temperature anomalies based on the average anomaly in that year.

The raw data shows a significant cooling of up to 1oC in the late 1960s. If anything there has been over-compensation in the adjustments. Since 1970, any warming in the adjusted data has been through further adjustments.

Is this evidence of a conspiracy to “hide a decline” in Paraguayan temperatures? I think not. My alternative hypothesis is that this decline, consistent over a number of thermometers is unexpected. Anybody looking at just one of these data sets recently, would assume that the step change in 40-year-old data from a distant third world country is bound to be incorrect. (Shub has a valid point) That change goes against the known warming trend for over a century from the global temperature data sets and the near stationary temperatures from 1950-1975. More importantly cooling goes against the “known” major driver of temperature recent change – rises in greenhouse gas levels. Do you trust some likely ropey instrument data, or trust your accumulated knowledge of the world? The clear answer is that the instruments are wrong. Homogenisation is then not to local instruments in the surrounding areas, but to the established expert wisdom of the world. The consequent adjustment cools past temperatures by one degree. The twentieth century warming is enhanced as a consequence of not believing what the instruments are telling you. The problem is that this step change is replicated over a number of stations. Paul Homewood had shown that it probably extends into Bolivia as well.

But what happens if the converse happens? What if there is a step rise in some ropey data set from the 1970s and 1980s? This might be large, but not inconsitent with what is known about the world. It is unlikely to be adjusted downwards. So if there have been local or regional step changes in average temperature over time both up and down, the impact will be to increase the rate of warming if the data analysts believe that the world is warming and human beings are the cause of it.

Further analysis is required to determine the extent of the problem – but not from this unpaid blogger giving up my weekends and evenings.

Kevin Marshall

All first time comments are moderated. Please also use the comments as a point of contact, stating clearly that this is the case and I will not click the publish button, subject to it not being abusive. I welcome other points of view, though may give a robust answer.

The Propaganda methods of ….and Then There’s Physics on Temperature Homogenisation

There has been a rash of blog articles about temperature homogenisations that is challenging the credibility of the NASS GISS temperature data. This has lead to attempts by anonymous blogger andthentheresphysics (ATTP) to crudely deflect from the issues identified. It is propagandist’s trick of turning people’s perspectives. Instead of a dispute about some scientific data, ATTP turns the affair into a dispute between those with authority and expertise in scientific analysis, against a few crackpot conspiracy theorists.

The issues on temperature homogenisation are to do with the raw surface temperature data and the adjustments made to remove anomalies or biases within the data. “Homogenisation” is a term used for process of adjusting the anomalous data into line with that from the surrounding data.

The blog articles can be split into three categories. The primary articles are those that make direct reference to the raw data set and the surrounding adjustments. The secondary articles refer to the primary articles, and comment upon them. The tertiary articles are directed at the secondary articles, making little or no reference to the primary articles. I perceive the two ATTP articles as fitting into the scheme below.

Primary Articles

The source of complaints about temperature homogenisations is Paul Homewood at his blog notalotofpeopleknowthat. The source of the articles is NASA’s Goddard Institute for Space Studies (GISS) database. For any weather station GISS provide nice graphs of the temperature data. The current after GISS homogeneity adjustment data is available here and the raw GHCN data + UHSHCN corrections is available here up until 2011 only. For any weather station GISS provide nice graphs of the temperature data. Homewood’s primary analysis was to show the “raw data” side by side.

20/01/15 Massive Tampering With Temperatures In South America

This looked at all three available rural stations in Paraguay. The data from all three at Puerto Casado, Mariscal and San Jan Buatista/Misiones had the same pattern of homogenization adjustments. That is, cooling of the past, so that instead of the raw data showing the 1960s being warmer than today, it was cooler. What could they have been homogenized to?

26/01/15 All Of Paraguay’s Temperature Record Has Been Tampered With

This checked the six available urban sites in Paraguay. Homewood’s conclusion was that

warming adjustments have taken place at every single, currently operational site in Paraguay.

How can homogenization adjustments all go so same way? There is no valid reason for making such adjustments, as there is no reference point for the adjustments.

29/01/15Temperature Adjustments Around The World

Homewood details other examples from Southern Greenland, Iceland, Northern Russia, California, Central Australia and South-West Ireland. Instead of comparing the raw with the adjusted data, he compared the old adjusted data with the recent data. Adjustment decisions are changing over time, making the adjusted data sets give even more pronounced warming trends.

30/01/15 Cooling The Past In Bolivia

Then he looked at all 14 available stations in neighbouring Bolivia. His conclusion

At every station, bar one, we find the ….. past is cooled and the present warmed.”

(The exception was La Paz, where the cooling trend in the raw data had been reduced.)

Why choose Paraguay in the first place? In the first post, Homewood explains that within a NOAA temperature map for the period 1981-2010 there appeared to be a warming hotspot around Paraguay. Being a former accountant he checked the underlying data to see if it existed in the data. Finding an anomaly in one area, he checked more widely.

The other primary articles are

26/01/15 Kevin Cowton NOAA Paraguay Data

This Youtube video was made in response to Christopher Booker’s article in the Telegraph, a secondary source of data. Cowton assumes Booker is the primary source, and is criticizing NOAA data. A screen shot of the first paragraph shows these are untrue.

Further, if you read down the article, Cowton’s highlighting of the data from one weather station is also misleading. Booker points to three, but just illustrates one.

Despite this, it still ranks as a primary source, as there are direct references to the temperature data and the adjustments. They are not GISS adjustments, but might be the same.

29/01/15 Shub Niggurath – The Puerto Casado Story

Shub looked at the station moves. He found that the metadata for the station data is a mess, so there is no actual evidence of the location changing. But, Shub reasons the fact that there was a step change in the data meant that it moved, and the fact that it moved meant there was a change. Shub is a primary source as he looks at the adjustment reason.

 

Secondary Articles

The three secondary articles by Christopher Booker, James Delingpole and BishopHill are just the connectors in this story.

 

Tertiary articles of “…and Then There’s Physics”

25/01/15 Puerto Cascado

This looked solely at Booker’s article. It starts

Christopher Booker has a new article in the The Telegraph called Climategate, the sequel: How we are STILL being tricked with flawed data on global warming. The title alone should be enough to convince anyone sensible that it isn’t really worth reading. I, however, not being sensible, read it and then called Booker an idiot on Twitter. It was suggested that rather than insulting him, I should show where he was wrong. Okay, this isn’t really right, as there’s only so much time and effort available, and it isn’t really worth spending it rebutting Booker’s nonsense.

However, thanks to a tweet from Ed Hawkins, it turns out that it is really easy to do. Booker shows data from a site in Paraguay (Puerto Casado) in which the data was adjusted from a trend of -1.37o C per century to +1.36o C per century. Shock, horror, a conspiracy?

 

ATTP is highlighting an article, but is strongly discouraging anybody from reading it. That is why the referral is a red line in the graphic above. He then says he is not going to provide a rebuttal. ATTP is good to his word and does not provide a rebuttal. Basically it is saying “Don’t look at that rubbish, look at the real authority“. But he is wrong for a number of reasons.

  1. ATTP provides misdirection to an alternative data source. Booker quite clearly states that the source of the data is the NASA GISS temperature set. ATTP cites Berkeley Earth.
  2. Booker clearly states that there are thee rural temperature stations spatially spread that show similar results. ATTP’s argument that a single site was homogenized with the others in the vicinity falls over.
  3. This was further undermined by Paul Homewood’s posting on the same day on the other 6 available sites in Paraguay, all giving similar adjustments.
  4. It was further undermined by Paul Homewood’s posting on 30th January on all 14 sites in Bolivia.

The story is not of a wizened old hack making some extremist claims without any foundation, but of a retired accountant seeing an anomaly, and exploring it. In audit, if there is an issue then you keep exploring it until you can bottom it out. Paul Homewood has found an issue, found it is extensive, but is still far from finding the full extent or depth. ATTP, when confronted by my summary of the 23 stations that corroborate each other chose to delete it. He has now issued an update.

Update 4/2/2015 : It’s come to my attention that some are claiming that this post is misleading my readers. I’m not quite sure why, but it appears to be related to me not having given proper credit for the information that Christopher Booker used in his article. I had thought that linking to his article would allow people to establish that for themselves, but – just to be clear – the idiotic, conspiracy-laden, nonsense originates from someone called Paul Homewood, and not from Chistopher Booker himself. Okay, everyone happy now? J

ATTP cannot accept that he is wrong. He has totally misrepresented the arguments. When confronted with alternative evidence ATTP resorts to vitriolic claims. If someone is on the side of truth and science, they will encourage people to compare and contrast the evidence. He seems to have forgotten the advice about when in a whole…..

01/02/15
Temperature homogenisation

ATTP’s article on Temperature Homogenisation starts

Amazing as it may seem, the whole tampering with temperature data conspiracy has managed to rear its ugly head once again. James Delingpole has a rather silly article that even Bishop Hill calls interesting (although, to be fair, I have a suspicion that in “skeptic” land, interesting sometimes means “I know this is complete bollocks, but I can’t bring myself to actually say so”). All of Delingpole’s evidence seems to come from “skeptic” bloggers, whose lack of understand of climate science seems – in my experience – to be only surpassed by their lack of understanding of the concept of censorship J.

ATPP starts with a presumption of being on the side of truth, with no fault possible on his side. Any objections are due to a conscious effort to deceive. The theory of cock-up or of people not checking their data does not seem to have occurred to him. Then there is a link to Delingpole’s secondary article, but calling it “silly” again deters readers from looking for themselves. If they did, the readers would be presented with flashing images of all the “before” and “after” GISS graphs from Paraguay, along with links to the 6 global sites and Shub’s claims that there is a lack of evidence for the Puerto Casado site being moved. Delingpole was not able the more recent evidence from Bolivia, that further corroborates the story.

He then makes a tangential reference to his deleting my previous comments, though I never once used the term “censorship”, nor did I tag the article “climate censorship”, as I have done to some others. Like on basic physics, ATTP claims to have a superior understanding of censorship.

There are then some misdirects.

  • The long explanation of temperature homogenisation makes some good points. But what it does not do is explain that the size and direction of any adjustment is an opinion, and as such be wrong. It a misdirection to say that the secondary sources are against any adjustments. They are against adjustments that create biases within the data.
  • Quoting Richard Betts’s comment on Booker’s article about negative adjustments in sea temperature data is a misdirection, as Booker (a secondary source) was talking about Paraguay, a land-locked country.
  • Referring to Cowton’s alternative analysis is another misdirect, as pointed out above. Upon reflection, ATTP may find it a tad embarrassing to have this as his major source of authority.

Conclusions

When I studied economics, many lecturers said that if you want to properly understand an argument or debate you need to look at the primary sources, and then compare and contrast the arguments. Although the secondary sources were useful background, particularly in a contentious issue, it is the primary sources on all sides that enable a rounded understanding. Personally, by being challenged by viewpoints that I disagreed with enhanced my overall understanding of the subject.

ATTP has managed to turn this on its head. He uses methods akin to crudest propagandists of last century. They started from deeply prejudiced positions; attacked an opponent’s integrity and intelligence; and then deflected away to what they wanted to say. There never gave the slightest hint that one side might be at fault, or any acknowledgement that the other may have a valid point. For ATTP, and similar modern propagandists, rather than have a debate about the quality of evidence and science, it becomes a war of words between “deniers“, “idiots” and “conspiracy theorists” against the basic physics and the overwhelming evidence that supports that science.

If there is any substance to these allegations concerning temperature adjustments, for any dogmatists like ATTP, it becomes a severe challenge to their view of the world. If temperature records have systematic adjustment biases then climate science loses its’ grip on reality. The climate models cease to be about understanding the real world, but conforming to people’s flawed opinions about the world.

The only way to properly understand the allegations is to examine the evidence. That is to look at the data behind the graphs Homewood presents. I have now done that for the nine Paraguayan weather stations. The story behind that will have to await another day. However, although I find Paul Homewood’s claims of systematic biases in the homogenisation process to be substantiated, I do not believe that it points to a conspiracy (in terms of a conscious and co-ordinated attempt to deceive) on the part of climate researchers.

Feynman on Communist Science

I am currently engrossed in GENIUS: Richard Feynman and Modern Physics by James Gleick

In July 1962 Feynman went behind the Iron Curtain to attend a conference on gravitation in Warsaw. He was exasperated at the state of Soviet science. He wrote to his wife Gweneth:-

The “work” is always: (1) completely un-understandable, (2) vague and indefinite, (3) something correct that is obvious and self-evident, worked out by long and difficult analysis, and presented as an important discovery, or (4) a claim based on stupidity of the author that some obvious and correct fact, accepted and checked for years is, in fact, false (these are the worst: no argument will convince the idiot), (5) an attempt to do something, probably impossible, but certainly of no utility, which, it is finally revealed at the end, fails or (6) just plain wrong. There is a great deal of “activity in the field” these days, but this “activity” is mainly in showing that the previous “activity” of somebody else resulted in an error or in nothing useful or in something promising. (Page 353)

The failings of Government-backed science are nothing new.

AndThenTheresPhysics on Paraguayan Temperature Data

The blog andthentheresphysics is a particularly dogmatic and extremist website. Most of the time it provides extremely partisan opinion pieces on climate science, but last week the anonymous blogger had a post “Puerto Casado” concerning an article in the Telegraph about Paraguayan temperature by Christopher Booker. I posted the following comment

The post only looks at one station in isolation, and does not reference original source of the claims.

Paul Homewood at notalotofpeopleknowthat looked at all three available rural stations in Paraguay. The data from Mariscal and San Jan Buatista/Misiones had the same pattern of homogenization adjustments as Puerto Casado. That is, cooling of the past, so that instead of the raw data showing the 1960s being warmer than today, it was cooler.

Using his accountancy mind set, Homewood then (after Booker’s article was published) checked the six available urban sites in Paraguay. His conclusion was that

warming adjustments have taken place at every single, currently operational site in Paraguay.

Then he looked at all 14 available stations in neighbouring Bolivia. His conclusion

At every station, bar one, we find the ….. past is cooled and the present warmed.”

(The exception was La Paz, where the cooling trend in the raw data had been reduced.)

Homogenization of data means correcting for biases. For a 580,000 sq mile area of Central South America it would appears strong adjustment biases to have been introduced in a single direction.

Homewood references every single site. Anyone can easily debunk my summary by searching the following:-

Jan-20 Massive Tampering With Temperatures In South America

Jan-26 All Of Paraguay’s Temperature Record Has Been Tampered With

Jan-30 Cooling The Past In Bolivia

My comment did not contain the hyperlinks or italics. It has been deleted without passing through moderation. The only bit of the moderation policy I believe that I fall foul of is the last.

This blog is also turning out to be both more time consuming and more stressful than anticipated. Some moderation may be based purely on whether or not I/we can face dealing with how a particular comment thread is evolving. This is not a public service and so, in general, any moderation decision is final.

The counter-argument from ATTP is

If you look again at the information for this station the trend before adjustments was -1.37oC per century, after quality control it was -0.89 oC per century, and after adjusting for the station moves was +1.36 oC per century. Also, if you consider the same region for the same months, the trend is +1.37 oC per century, and for the country for the same months it is +1.28 oC per century. So, not only can one justify the adjustments, the result of the adjustments is consistent with what would be expected for that region and for the country.

Paul Homewood has investigated all the other stations in Paraguay or in neighbouring Bolivia and found similar ad hoc adjustments. It completely undermines ATTP’s arguments. This anonymous individual is wrong. Rather than face dealing that he is wrong, ATTP has deleted my comment. He is entitled to his beliefs, and in a free society can proselytize to his heart’s content. But there are boundaries. One of them is in suppressing evidence that undermines the justification for costly and harmful public policies. That is policies that are harming the poor here in Britain, but (and more importantly) can only be remotely successful by destroying the prospect of increasing living standards for over half the world’s population. Paul Homewood and others are increasingly uncovering similar biases in the temperature record in other parts of the world. The underlying data for the global surface temperature sets is in need of a proper, independent audit, to determine the extent of the biases within it. But when the accusation that the Paraguayan temperature data set is corrupted, people will point to ATTP’s blog post as evidence that there is but a single instance, and that instance has been debunked. Another boundary is a value that that many in the criminal justice system also hold dear. The more emotive the subject, the greater all concerned must go out of their way to compare and contrast the arguments. That way, the influence of our very human prejudices will be minimized. Again, independent audits will help eliminate this. If ATTP thinks he has all the answers then he will not be afraid to encourage people to look at both sides, evaluate by independent standards, and make up their own minds.

Kevin Marshall

Comment ATTP 310115

Instances of biases in the temperature sets

This will be added to when I get time.

Paul Homewood on San Diego data 30-01-15

Shub Niggareth looks into the Puerto Casado story 29-01-15

Paul Homewood on Reykjavik, Iceland 30-01-15

Jennifer Marohasy letter on Australian data 15-01-15

Update 01-02-15

I have invited a response from ATTP, by posting #comment-46021.

ATTP

You have deleted two of my comments in the last 24 hours that meet all of your moderation criteria except one – that you cannot face dealing with a challenge. That is your prerogative. However, the first comment, (now posted on my blog) I believe completely undermines your argument. Paul Homewood has shown that the Puerto Casado dataset homogenization did not make it consistent with neighbouring non-homogenized surface temperature stations, but that all the Paraguayan and neighbouring Bolivian surface temperature stations were “homogenized” in the same way. That is, rather than eliminating the biases that local factors can create, the homogenizations, by people far removed from the local situations, effectively corrupted the data set, in a way that fits reality to the data.

I might be wrong in this. But based on your arguments so far I believe that my analysis is better than yours. I also believe that who has the better argument will only be resolved by an independent audit of the adjustments. If you are on the side of truth you would welcome that, just as a prosecutor would welcome the chance to prove their case in court, or a pharmaceutical company would welcome independent testing of their new wonder-drug that could save millions of lives. Even if I am wrong, I will be glad at being refuted by superior arguments, as I will know that to refute my claims will require you to up your game. Humanity will be served by my challenging a weak case and making it stronger. You have generated over 500 comments to your post, so an appeal for help via email should generate some response. If that does not work there are many well-funded organisations that I am sure will rush to your assistance.

There are at least seven options I think you can take.

  1. Ignore me, and pretend nothing has happened. Bad idea. I will start analysing your posts, as you did with Wattsupwiththat, only rather than your pea-shooters firing blanks, I have the heavy artillery with HE shells.
  2. Do an attack post – like desmogblog or Bob Ward of the Grantham Institute might do. Bad idea, I will take that as perverting or suppressing the evidence, and things will get rather rough. After all, I am but a (slightly) manic ex-beancounter, and you have the consensus of science on your side, so why is should sending in the PR thugs be necessary unless you are on the losing side?
  3. Get together a response that genuinely ups the game. Win or lose you will have served humanity as I and others will have to rebut you. Engage and all will gain through greater understanding.
  4. Admit that there are other valid points of view. A start would be to release this comment, which will get posted on my blog anyway. I quite accept that you cannot come up with a rebuttal at the drop-of-a-hat. A simple comment that a response will be made sometime this year is fine by me.
  5. Also call for a truly independent audit of the surface temperature set. It could be for your own reasons, and if truly independent, I will support it. If a whitewash, like the enquiries that Gordon Brown ordered into Climategate, an audit will do more harm than good.
  6. Close down your blog and do something else instead. You choose to be anonymous, and I respect that. Walking away is easy.
  7. Admit that you got this one wrong. You will take some flack, but not from me.

DECC’s Dumb Global Calculator Model

On the 28th January 2015, the DECC launched a new policy emissions tool, so everyone can design policies to save the world from dangerous climate change. I thought I would try it out. By simply changing the parameters one-by-one, I found that the model is both massively over-sensitive to small changes in input parameters and is based on British data. From the model, it is possible to entirely eliminate CO2 emissions by 2100 by a combination of three things – reducing the percentage travel in urban areas by car from 43% to 29%; reducing the average size of homes to 95m2 from 110m2 today; and for everyone to go vegetarian.

The DECC website says

Cutting carbon emissions to limit global temperatures to a 2°C rise can be achieved while improving living standards, a new online tool shows.

The world can eat well, travel more, live in more comfortable homes, and meet international carbon reduction commitments according to the Global Calculator tool, a project led by the UK’s Department of Energy and Climate Change and co-funded by Climate-KIC.

Built in collaboration with a number of international organisations from US, China, India and Europe, the calculator is an interactive tool for businesses, NGOs and governments to consider the options for cutting carbon emissions and the trade-offs for energy and land use to 2050.

Energy and Climate Change Secretary Edward Davey said:

“For the first time this Global Calculator shows that everyone in the world can prosper while limiting global temperature rises to 2°C, preventing the most serious impacts of climate change.

“Yet the calculator is also very clear that we must act now to change how we use and generate energy and how we use our land if we are going to achieve this green growth.

“The UK is leading on climate change both at home and abroad. Britain’s global calculator can help the world’s crucial climate debate this year. Along with the many country-based 2050 calculators we pioneered, we are working hard to demonstrate to the global family that climate action benefits people.”

Upon entering the calculator I was presented with some default settings. Starting from a baseline emissions in 2011 of 49.9 GT/CO2e, this would give predicted emissions of 48.5 GT/CO2e in 2050 and 47.9 GT/CO2e in 2100 – virtually unchanged. Cumulative emissions to 2100 would be 5248 GT/CO2e, compared with 3010 GT/CO2e target to give a 50% chance of limiting warming to a 2°C rise. So the game is on to save the world.

I only dealt with the TRAVEL, HOMES and DIET sections on the left.

I went through each of the parameters, noting the results and then resetting back to the baseline.

The TRAVEL section seems to be based on British data, and concentrated on urban people. Extrapolating for the rest of the world seems a bit of a stretch, particularly when over 80% of the world is poorer. I was struck first by changing the mode of travel. If car usage in urban areas fell from 43% to 29%, global emissions from all sources in 2050 would be 13% lower. If car usage in urban areas increased from 43% to 65%, global emissions from all sources in 2050 would be 7% higher. The proportions are wrong (-14% gives -13%, but +22% gives +7%) along with urban travel being too high a proportion of global emissions.

The HOMES section has similar anomalies. Reducing the average home area by 2050 to 95m2 from 110m2 today reduces total global emissions in 2050 by 20%. Independently decreasing average urban house temperature in 2050 from 17oC in Winter & 27oC in Summer, instead of 20oC & 24oC reduces total global emissions in 2050 by 7%. Both seem to be based on British-based data, and highly implausible in a global context.

In the DIET section things get really silly. Cutting the average calorie consumption globally by 10% reduces total global emissions in 2050 by 7%. I never realised that saving the planet required some literal belt tightening. Then we move onto meat consumption. The baseline for 2050 is 220 Kcal per person per day, against the current European average of 281 Kcal. Reducing that to 14 Kcal reduces global emissions from all sources in 2050 by 73%. Alternatively, plugging in the “worst case” 281 Kcal, increases global emissions from all sources in 2050 by 71%. That is, if the world becomes as carnivorous in 2050 as the average European in 2011, global emissions from all sources at 82.7 GT/CO2e will be over six times higher the 13.0 GT/CO2e. For comparison, OECD and Chinese emissions from fossil fuels in 2013 were respectively 10.7 and 10.0 GT/CO2e. It seems it will be nut cutlets all round at the climate talks in Paris later this year. No need for China, India and Germany to scrap all their shiny new coal-fired power stations.

Below is the before and after of the increase in meat consumption.

Things get really interesting if I take the three most sensitive, yet independent, scenarios together. That is, reducing urban car use from 43% to 29% of journeys in 2050; reducing the average home area by 2050 to 95m2 from 110m2; and effectively making a sirloin steak (medium rare) and venison in redcurrant sauce things of the past. Adding them together gives global emissions of -2.8 GT/CO2e in 2050 and -7.1 GT/CO2e in 2100, with cumulative emissions to 2100 of 2111 GT/CO2e. The model does have some combination effect. It gives global emissions of 3.2 GT/CO2e in 2050 and -0.2 GT/CO2e in 2100, with cumulative emissions to 2100 of 2453 GT/CO2e. Below is the screenshot of the combined elements, along with a full table of my results.

It might be great to laugh at the DECC for not sense-checking the outputs of its glitzy bit of software. But it concerns me that it is more than likely the same people who are responsible for this nonsense are also responsible for the glossy plans to cut Britain’s emissions by 80% by 2050 without destroying hundreds of thousands of jobs; eviscerating the countryside; and reducing living standards, especially of the poor. Independent and critical review and audit of DECC output is long overdue.

Kevin Marshall

 

A spreadsheet model is also available, but I used the online tool, with its’ excellent graphics. The calculator is built by a number of organisations.

Global Emissions Reductions Targets for COP21 Paris 2015

There is a huge build-up underway for the COP21 climate conference to be staged in Paris in November. Many countries and NGOs are pushing for an agreement that will constrain warming to just 2oC, but there are no publicly available figures of what this means for all the countries of the world. This is the gap I seek close with a series of posts. The first post is concerned with getting a perspective on global emissions and the UNIPCC targets.

In what follows, all the actual figures are obtained from three primary sources.

  • Emissions data comes from the Carbon Dioxide Information Analysis Centre or CDIAC.
  • Population data comes from the World Bank, though a few countries are missing. These are mostly from Wikipedia.
  • The Emissions targets can be found in the Presentation for the UNIPCC AR5 Synthesis Report.

All categorizations and forecast estimates are my own.

The 1990 Emissions Position

A starting point for emissions reductions is to stabilize emissions to 1990 levels, around the time that climate mitigation was first proposed. To illustrate the composition emissions I have divided the countries of the world into the major groups meaningful at that time – roughly into First World developed nations, the Second World developed communist countries and the Third World developing economies. The First World is represented by the OECD. I have only included members in 1990, with the USA split off. The Second World is the Ex-Warsaw pact countries, with the countries of the former Yugoslavia included as well. The rest are of the world is divided into five groups. I have charted the emissions per capita against the populations of these groups to come up with the following graph.

In rough terms, one quarter of the global population accounted for two-thirds of global emissions. A major reduction on total emissions could therefore be achieved by these rich countries taking on the burden of emissions reductions, and the other countries not increasing their emissions, or keeping growth to a minimum.

The 2020 emissions forecast

I have created a forecast of both emissions and population for 2020 using the data up to 2013 for both emissions and population. Mostly these are assuming the same change in the next seven years as the last. For emissions in the rapidly-growing countries this might be an understatement. For China and India I have done separate forecasts based on their emissions commitments. This gives the following graph.

The picture has changed dramatically. Population has increased by 2.4 billion or 45% and emissions by over 80%. Global average emissions per capita have increased from 4.1 to 5.2t/CO2 per capita. Due to the population increase, to return global emissions to 1990 levels would mean reducing average emissions per capita to 2.85t/CO2.

The composition of emissions has been even more dramatic. The former First and Second World countries will see a slight fall in emissions from 14.9 to 14.0 billion tonnes of CO2 and the global share will have reduced from 68% to 36%. Although total population will have increased on 1990, the slower growth than elsewhere means the share of global population has shrunk to just 19%. China will have a similar population and with forecast emissions of 13.1 billion tonnes of CO2, 33% of the global total.

The picture is not yet complete. On slide 30 of their Synthesis Report presentation the UNIPCC state

Measures exist to achieve the substantial emissions reductions required to limit likely warming to 2oC (40-70% emissions reduction in GHGs globally by 2050 and near zero GHGs in 2100)

The baseline is 2011, when global emissions were 29.74 billion t/CO2. In 2050 global population will be nearly nine billion. This gives an upper limit of 2.2 t/CO2 per capita and lower limit of 1.1 t/CO2 per capita.

To put this in another perspective, consider the proportions of people living in countries that need emissions targets based on greater than 2.2t/CO2 emissions per capita.

In 1990, it was just a third of the global population. In 2020 it will be three quarters. No longer can an agreement on constraining global CO2 emissions be limited to a few countries. It needs to be truly global. The only area that meets the target is Africa, but even here the countries of Algeria, Egypt, Libya, Tunisia and South Africa would need to have emission reduction targets.

Further Questions

  1. What permutations are possible if other moral considerations are taken into account, like the developed countries bear the burden of emission cuts?
  2. What targets should be set for non-fossil fuel emissions, such as from Agriculture? Are these easier or harder to achieve than for fossil fuels?
  3. What does meeting emission targets mean for different types of economies? For instance are emission reductions more burdensome for the fast-growing emerging economies that for the developed economies?
  4. What are the measures that IPCC claims exist to reduce emissions? Are they more onerous than the consequences of climate change?
  5. Are there in place measures to support the states dependent on the production of fossil fuels? In particular, the loss of income to the Gulf States from leaving oil in the ground may further destabilize the area.
  6. What sanctions if some countries refuse to sign up to an agreement, or are politically unable to implement an agreement?
  7. What penalties will be imposed if countries fail to abide by the agreements made?

Kevin Marshall

Follow

Get every new post delivered to your Inbox.

Join 44 other followers