Study on UK Wind and Solar potential fails on costs

Oxford University’s Smith School of Enterprise and the Environment in August published a report “Could Britain’s energy demand be met entirely by wind and solar?“, a short briefing “Wind and solar power could significantly exceed Britain’s energy needs” with a press release here. Being a (slightly) manic beancounter, I will review the underlying assumptions, particularly the costs.

Summary Points

  • Projected power demand is likely high, as demand will likely fall as energy becomes more expensive.
  • Report assumes massively increased load factors for wind turbines. A lot of this increase is from using benchmarks contingent on technological advances.
  • The theoretical UK scaling up of wind power is implausible. 3.8x for onshore wind, 9.4x for fixed offshore and >4000x for floating offshore wind. This to be achieved in less than 27 years.
  • Most recent cost of capital figures are from 2018, well before the recent steep rises in interest rates. Claim of falling discount rates is false.
  • The current wind turbine capacity is still a majority land based, with a tiny fraction floating offshore. A shift in the mix to more expensive technologies leads to an 82% increase in average levelised costs. Even with the improbable load capacity increases, the average levilised cost increase to 37%.
  • Biggest cost rise is from the need for storing days worth of electricity. The annual cost could be greater than the NHS 2023/24 budget.
  • The authors have not factored in the considerable risks of diminishing marginal returns.

Demand Estimates

The briefing summary states

299 TWh/year is an average of 34 GW, compared with 30 GW average demand in 2022 at grid.iamkate.com. I have no quibble with this value. But what is the five-fold increase by 2050 made-up of?

From page 7 of the full report.

So 2050 maximum energy demand will be slightly lower than today? For wind (comprising 78% of potential renewables output) the report reviews the estimates in Table 1, reproduced below as Figure 1

Figure 1: Table 1 from page 10 of the working paper

The study has quite high estimates of output compared to previously, but things have moved on. This is of course output per year. If the wind turbines operated at 100% capacity then the required for 24 hours a day, 365.25 days a year would be 265.5 GW, made up of 23.5GW for onshore, 64GW for fixed offshore and 178GW for floating offshore. In my opinion 1500 TWh is very much on the high side, as demand will fall as energy becomes far more expensive. Car use will fall, as will energy use in domestic heating when the considerably cheaper domestic gas is abandoned.

Wind Turbine Load Factors

Wind turbines don’t operate at anything like 100% of capacity. The report does not assume this. But it does assume load factors of 35% for onshore and 55% for offshore. Currently floating offshore is insignificant, so offshore wind can be combined together. The UK Government produces quarterly data on renewables, including load factors. In 2022 this average about 28% for onshore wind (17.6% in Q3 to 37.6% in Q1) and 41% for offshore wind (25.9% in Q3 to 51.5% in Q4). This data, shown in four charts in Figure 2 does not seem to shown an improving trend in load capacity.

Figure 2 : Four charts illustrating UK wind load capacities and total capacities

The difference is in the report using benchmark standards, not extrapolating from existing experience. See footnote 19 on page 15. The first ref sited is a 2019 DNV study for the UK Department for Business, Energy & Industrial Strategy. The title – “Potential to improve Load Factor of offshore wind farms in the UK to 2035” – should give a clue as to why benchmark figures might be inappropriate to calculate future average loads. Especially when the report discusses new technologies and much larger turbines being used, whilst also assuming some load capacity improvements from reduced downtimes for maintenance.

Scaling up

The report states on page 10

From the UK Government quarterly data on renewables, these are the figures for Q3 2022. Q1 2023 gives 15.2 GW onshore and 14.1 GW offshore. This offshore value was almost entirely fixed. Current offshore floating capacity is 78 MW (0.078 GW). This implies that to reach the reports objectives of 2050 with 1500 TwH, onshore wind needs to increase 3.8 times, offshore fixed wind 9.4 times and offshore floating wind over 4000 times. Could diminishing returns, in both output capacities and costs per unit of capacity set in with this massive scaling up? Or maintenance problems from rapidly installing floating wind turbines of a size much greater than anything currently in service? On the other hand, the report notes that Scotland has higher average wind speeds than “Wales or Britain”, to which I suspect they mean that Scotland has higher average wind speeds to the rest of the UK. If so, they could be assuming a good proportion of the floating wind turbines will be located off Scotland, where wind speeds are higher and therefore the sea more treacherous. This map of just 19 GW of proposed floating wind turbines is indicative.

Cost of Capital

On page 36 the report states

You indeed find these rates on “Table 2.7: Technology-specific hurdle rates provided by Europe Economics”. My quibble is not that they are 2018 rates, but that during 2008-2020 interests rates were at historically low levels. In a 2023 paper it should recognise that globally interest rates have leapt since then. In the UK, base rates have risen from 0.1% in 2020 to 5.25% at the beginning of August 2023. This will surely affect the discount rates in use.

Wind turbine mix

Costs of wind turbines vary from project to project. However, the location determines the scale of costs. It is usually cheaper to put up a wind turbine on land than fix it to a sea bed, then construct a cable to land. This in turn is cheaper than anchoring a floating turbine to a sea bed often in water too deep to fix to the sea bed. If true, moving from land to floating offshore will increase average costs. For this comparison I will use some 2021 levilized costs of energy for wind turbines from US National Renewable Energy Laboratory (NREL).

Figure 3 : Page 6 of the NREL presentation 2021 Cost of Wind Energy Review

The levilized costs are $34 MWh for land-based, $78 MWh for fixed offshore, and $133 MWh for floating offshore. Based on the 2022 outputs, the UK weighted average levilized cost was about $60 MWh. On the same basis, the report’s weighted average levilized cost for 2050 is about $110 MWh. But allowing for 25% load capacity improvements for onshore and 34% for offshore brings average levilized cost down to $82 MWh. So the different mix of wind turbine types leads to an 83% average cost increase, but efficiency improvements bring this down to 37%. Given the use of benchmarks discussed above it would be reasonable to assume that the prospective mix variance cost increase is over 50%, ceteris paribus.

The levilized costs from the USA can be somewhat meaningless for the UK in the future, with maybe different cost structures. Rather than speculating, it is worth understanding why the levilized cost of floating wind turbines is 70% more than offshore fixed wind turbines, and 290% more (almost 4 times) than onshore wind turbines. To this end I have broken down the levilized costs into their component parts.

Figure 3 : NREL Levilized Costs of Wind 2021 Component Breakdown. A) Breakdown of total costs B) Breakdown of “Other Capex” in chart A

Observations

  • Financial costs are NOT the costs of borrowing on the original investment. The biggest element is cost contingency, followed by commissioning costs. Therefore, I assume that the likely long-term rise interest rates will impact the whole levilized cost.
  • Costs of turbines are a small part of the difference in costs.
  • Unsurprisingly, operating cost, including maintenance, are significantly higher out at sea than on land. Similarly for assembly & installation and for electrical infrastructure.
  • My big surprise is how much greater the cost of foundations are for a floating wind turbine are than a fixed offshore wind turbine. This needs further investigation. In the North Sea there is plenty of experience of floating massive objects with oil rigs, so the technology is not completely new.

What about the batteries?

The above issues may be trivial compared to the issue of “battery” storage for when 100% of electricity comes from renewables, for when the son don’t shine and the wind don’t blow. This is particularly true in the UK when there can be a few day of no wind, or even a few weeks of well below average wind. Interconnectors will help somewhat, but it is likely that neighbouring countries could be experiencing similar weather systems, so might not have any spare. This requires considerable storage of electricity. How much will depend on the excess renewables capacity, the variability weather systems relative to demand, and the acceptable risk of blackouts, or of leaving less essential users with limited or no power. As a ballpark estimate, I will assume 10 days of winter storage. 1500 TWh of annual usage gives 171 GW per hour on average. In winter this might be 200 GW per hour, or 48000 GWh for 10 or 48 million Mwh. The problem is how much would this cost?

In April 2023 it a 30 MWh storage system was announced costing £11 million. This was followed in May by a 99 MWh system costing £30 million. These respectively cost £367,000 and £333,000 per MWh. I will assume there will be considerable cost savings in scaling this up, with a cost of £100,000 per MWh. Multiplying this by 48,000,000 gives a cost estimate of £4.8 trillion, or nearly twice the 2022 UK GDP of £2.5 trillion. If one assumes a 25 year life of these storage facilities, this gives a more “modest” £192 billion annual cost. If this is divided by an annual usage of 1500 TWh it comes out at a cost of 12.8p KWh. These costs could be higher if interest rates are higher. The £192 billion costs are more than the 2023/24 NHS Budget.

This storage requirement could be conservative. On the other hand, if overall energy demand is much lower, due to energy being unaffordable it could be somewhat less. Without fossil fuel backup, there will be a compromise between costs energy storage and rationing with the risk of blackouts.

Calculating the risks

The approach of putting out a report with grandiose claims based on a number of assumptions, then expecting the public to accept those claims as gospel is just not good enough. There are risks that need to be quantified. Then, as a project progresses these risks can be managed, so the desired objectives are achieved in a timely manner using the least resources possible. These are things that ought to be rigorously reviewed before a project is adopted, learning from past experience and drawing on professionals in a number of disciplines. As noted above, there are a number of assumptions made where there are risks of cost overruns and/or shortfalls in claimed delivery. However, the biggest risks come from the law of diminishing marginal returns, a concept that has been understood for over 2 00 years. For offshore wind the optimal sites will be chosen first. Subsequent sites for a given technology will become more expensive per unit of output. There is also the technical issue of increased numbers of wind turbines having a braking effect on wind speeds, especially under stable conditions.

Concluding Comments

Technically, the answer to the question “could Britain’s energy demand be met entirely by wind and solar?” is in the affirmative, but not nearly so positively at the Smith School makes out. There are underlying technical assumptions that will likely not be borne out with further investigations. However, in terms of costs and reliable power output, the answer is strongly in the negative. This is an example of where rigorous review is needed before accepting policy proposals into the public arena. After all, the broader justification of contributing towards preventing “dangerous climate change” is upheld in that an active global net zero policy does not exist. Therefore, the only justification is on the basis of being net beneficial to the UK. From the above analysis, this is certainly not the case.

Ivanpah Solar Project Still Failing to Achieve Potential

Paul Homewood yesterday referred to a Marketwatch report titled “High-tech solar projects fail to deliver.” This was reposted at Tallbloke.

Marketwatch looks at the Ivanpah solar project. They comment

The $2.2 billion Ivanpah solar power project in California’s Mojave Desert is supposed to be generating more than a million megawatt-hours of electricity each year. But 15 months after starting up, the plant is producing just 40% of that, according to data from the U.S. Energy Department.

I looked at the Ivanpah solar project last fall, when the investors applied for a $539million federal grant to help pay off a $1.5 billion federal loan. One of the largest investors was Google, who at the end of 2013 had Cash, Cash Equivalents & Marketable Securities of $58,717million, $10,000million than the year before.

Technologically the Ivanpah plant seems impressive. It is worth taking a look at the website.

That might have been the problem. The original projections were for 1065,000 MWh annually from a 392 MW nameplate implying a planned output of 31% of capacity. When I look at the costings on Which? for solar panels on the roof of a house, they assume just under 10% of capacity. Another site, Wind and Sun UK, say

1 kWp of well sited PV array in the UK will produce 700-800 kWh of electricity per year.

That is around 8-9.5% of capacity. Even considering the technological superiority of the project and the climatic differences, three times is a bit steep, although 12.5% (40% of 31%) is very low. From Marketwatch some of the difference is can be explained by

  • Complex equipment constantly breaking down
  • Optimization of complex new technologies
  • Steam pipes leaking due to vibrations
  • Generating the initial steam takes longer than expected
  • It is cloudier than expected

However, even all of this cannot account for the output only being at 40% of expected. With the strong sun of the desert I would expect daily output to never exceed 40% of theoretical, as it is only daylight for 50% of the time, and just after sunrise and before sunset the sun is less strong than at midday. As well as the teething problems with complex technology, it appears that the engineers were over optimistic. A lack of due diligence in appraising the scheme – a factor common to many large scale Government backed initiatives – will have let the engineers have the finance for a fully scaled-up version of what should have been a small-scale project to prove the technology.

 

Ivanpah 392MW Solar Plant a green energy failure even at the planning stage

The Hockey Schtick blog specializes in summarizing scientific papers that have a sceptical leaning. A couple of days ago it posted about the World’s largest solar energy plant applying for a $539million federal grant to help pay off a $1.5 billion federal loan. The Ivanpah solar electric generating plant is owned by Google and renewable energy giant NRG. Google can certainly afford to bear these loses. At the end of 2013 its accounts state that it had Cash, Cash Equivalents & Marketable Securities of $58,717million, $10,000million than the year before.

Technologically the Ivanpah plant sounds impressive. Problem is that in it’s first year of operation it produced one quarter of the projected electricity. As a minor consequence, it was projected to scorch 1,000 birds a year. Instead it is 28,000 in the first year. A three minute summary is at Fox News.

But even at the planning stage there was either no proper business plan presented, or at least no proper scrutiny like a bank would do when making a loan. 1065,000 MWh annually from a 392 MW nameplate is a planned output of 31% of capacity. Even accepting that figure, a $2bn investment with a 20 year payback (zero discount rate) is still nearly $100 MWh. A 10 year payback is much more reasonable. Add maintenance and operating costs easily gets to $200 MWh. A small utility company in Wisconsin buys in extra electricity for $30 MWh. So the planned cost was 6-7 times the wholesale price of electricity.

Maybe this was justified in saving the planet?

The AR4 synthesis report of 2007* said that peer-reviewed estimates of the social costs of carbon from averaged on 2005 $12 per tonne of CO2, but the range from 100 estimates is large (-$3 to $95/tCO2). If we take the bold assumption that the theoretic output of this plant would entirely replace the electricity from a typical coal-fired power station producing 900kg of CO2 per MWh, then the saving is $190t/CO2, or double the very top-end 2005 estimate, or 15 times the average estimate. For some reason, the Social Cost of Carbon is missing from the

Suppose the US was “really serious” about doing its bit to save the planet and tried to cut its CO2 emissions by 80%. In round figures, in 2013 that was 5 billion tonnes of CO2 equivalent (source CDIAC). Using similar schemes, it would cost $760bn a year or 5% of 2013 GDP of $16.8trn. Remember, that is if similar schemes are successful. The Ivanpah solar plant does not look like a success.

 

* For some reason, the Social Cost of Carbon is missing from the AR5 Synthesis Report published on November 1st. I would guess the reason that it has fallen out of favour is that the marginal abatement costs are much larger than the highest estimates, and the cost of doing nothing per tonne of CO2 are about zero.

Kevin Marshall

Understanding the US EIAs Levilized Cost of Electric Generation figures

At Watts Up With That?, Willis Eschenbach has a post “The Levelized Cost of Electric Generation“. These are estimated figures by US Energy Information Agency (EIA) for the costs of power by fuel source, for plants with construction started now that would enter service in 2018. The full table from the EIA in $/MwH is reproduced as Table 1 below.

Willis makes the valid point that every unit of “non-dispatchable” power (i.e. renewables with no power on demand) capacity, there must be an equal amount of dispatchable power to back it up. He does not follow this up. Non-dispatchable power does not need to be fully-covered by the expensive high-efficiency fossil-fuelled power stations. The most extreme conditions of peak power demands but no wind can be met by diesel generators. These are relatively low capital cost, but with high unit costs of output. They still add to the costs of renewables, along with reducing the CO2 savings. In terms of the large scale fossil-fuelled power stations gas is clearly better than coal. Combined cycle gas has half the capital cost per unit as conventional coal so dropping the utilisation will have a much smaller impact on unit costs. Further it can be switched on or off much quicker than conventional coal. Combined the actual additional cost of renewables is lower than he implies.

As I have been looking into the subsidies that renewables receive in the UK, I would like to observations. To understand these comments in the context of Willis Eschenbach’s post please note:-

  • In the UK, all generated electricity is paid the wholesale price (approx $0.09 kwh at present).
  • In addition renewables receive renewables obligation credits or ROCs. Biomass (wood pellets usually imported from USA) and onshore wind receive 1 ROC per megawatt hour. Offshore wind receives 2 ROCs. With a ROC worth $0.07 kwh (£42.02 MwH), onshore wind and biomass receives $0.16 kwh and offshore wind $0.23 kwh.
  • Currency conversion is at £1.00 = £1.66. Willis uses kilowatt hours for his simplified summary, whereas as the EIA uses megawatt hours.

Revenue is somewhat different to the costs, but there are a few observations possible.

  1. Capacity utilisation for onshore wind is assumed at 34% and 37% for offshore. For the UK, actual average utilisation as 26% for onshore and 35% for offshore. On that basis, US costs for onshore wind would rise from $0.087 to $0.117 kwh. Here are the figures from the most recent four available years.

  2. Biomass in the UK consists of burning non-fossil fuels in existing coal-fired power stations. It is more expensive than coal because (a) fuel cost per tonne is more than coal and (b) output per tonne is slightly less than coal. I would want to know why the capital cost per kwh is 20% lower and why the variable costs are just 45% higher. On fuel costs alone the 0.2 ROCs per Mwh would be more than generous for biomass. Based on figures from April to August 2013, the full year subsidy saving of this change would be in the order of £300m or $500m per annum.
  3. The transmission investment is vastly understated. Like in the UK, the cost of transmission for a power station investor is likely in connecting the power station to the nearest point on the national grid, regardless of the capacity of the line. To obtain 34% efficiency, wind turbines need to be placed in highly exposed areas, such as hill-tops. Population centres, and established grid networks, tend to be on the plains, or in sheltered valleys. In the UK, the best locations for wind turbines are in the far North of Scotland. To effectively connect this to main grid means upgrading about 400 miles of transmission lines to enable around 5-10GW of power at peak generation. This capital cost could be as much as the wind turbines themselves. Fossil-fuelled power stations tend to be located near existing power stations. These in turn are near to the existing grid infrastructure. The upshot is that wind turbines have much higher transmission costs than fossil-fuelled power stations. The difference could be a number of cents per kilowatt hour.

Kevin Marshall