Spending Money on Foreign Aid instead of Renewables

On the Discussion at BishopHill, commentator Raff asked people whether the $1.7 trillion spent so far on renewables should have been spent on foreign aid instead. This is an extended version of my reply.

The money spent on renewables has been net harmful by any measure. It has not only failed to even dent global emissions growth, it will also fail even if the elusive global agreement is reached as the country targets do not stack up. So the people of the emissions-reducing countries will bear both the cost of those policies and practically all the costs of the unabated warming as well. The costs of those policies have been well above anything justified in the likes of the Stern Review. There are plenty of British examples at Bishop Hill of costs being higher than expected and (often) solutions being much less effective than planned from Wind, solar, CCS, power transmission, domestic energy saving etc. Consequences have been to create a new category of poverty and make our energy supplies less secure. In Spain the squandering of money has been proportionately greater and likely made a significant impact of the severity of the economic depression.1

The initial justification for foreign aid came out of the Harrod and Domar growth models. Lack of economic growth was due to lack of investment, and poor countries cannot get finance for that necessary investment. Foreign Aid, by bridging the “financing gap“, would create the desired rate of economic growth. William Easterly looked at 40 years of data in his 2002 book “The Elusive Quest for Growth“. Out of over 80 countries, he could find just one – Tunisia – where foreign aid conformed to the theory. That is where increased aid was followed by increased investment which was followed by increased growth. There were plenty examples of where countries received huge amounts of aid relative to GDP over decades and their economies shrank. Easterly graphically confirmed what the late Peter Bauer said over thirty years ago – “Official aid is more likely to retard development than to promote it.

In both constraining CO2 emissions and Foreign Aid the evidence shows that the pursuit of these policies is not just useless, but possibly net harmful. An analogy could be made with a doctor who continues to pursue courses of treatment when the evidence shows that the treatment not only does not work, but has known and harmful side effects. In medicine it is accepted that new treatments should be rigorously tested, and results challenged, before being applied. But a challenge to that doctor’s opinion would be a challenge to his expert authority and moral integrity. In constraining CO2 emissions and promoting foreign aid it is even more so.

Notes

  1. The rationale behind this claim is explored in a separate posting.

Kevin Marshall

Britain’s Folly in Attempting to Save the World from Global Warming

Last week in the House of Lords1 Viscount Ridley asked Baroness Verma, a minister at the Department of Energy and Climate Change, about the hiatus in global warming. Lord Ridley asked Lady Verma

Would you give us the opinion of your scientific advisers as to when this hiatus is likely to end.

Lady Verma replied

It may have slowed down, but that is a good thing. It could well be that some of the measures we are taking today is helping that to occur.

I already commented at Bishop Hill – repeated by James Delingpole

From 1990 to 2013 global emissions increased by 61%. Of that increase, 67% was from China & India. This is not surprising as they were both growing fast from a low base, and combined contain nearly 40% of global population. The UK, with less than 1% of global population managed to decrease its emissions by 19%. In doing so, they managed to offset nearly 1.2% of the combined increase in China & India.

However this is not the full story, particularly with respect to understanding future emissions growth. Here I extend the analysis of the CDIAC data set2 to give a more comprehensive picture. CDIAC (Carbon Dioxide Information Analysis Centre) have estimates of CO2 emissions in tonnes of carbon equivalent for all countries from 1960 to 2013. These I have split out the countries of India, China and UK. The rest I have lumped into three groups – The major developed ACEJU countries3, the Ex-Warsaw Pact countries4 and ROW5 (Rest of the World). For emissions I have taken the baseline year of 1990, the latest year of 2013 and then forecast emissions for 20206.

The major developed economies have virtually unchanged, although, along with the UK the proportion of global emissions has fallen from 45% to 28% between 1990 and 2013 and are forecasted to fall further to 23% of global emissions even without aggressive emission reduction policies.

The collapse of communism meant the collective emissions of the Ex-Warsaw Pact countries fell by 44% between 1988 and 1999. That in 2020 emissions levels will still be around 20% lower, even though the economies will be far richer, is due to the inefficiencies of the Communist system.

China and India had most of the emissions growth between 1990 and 2013, there emissions growing by 300% and 250% respectively. That growth was equivalent to 16 times the UK emissions in 1990. By 2020 China and India’s emissions growth over 30 years is likely to have cancelled out the UK’s 30% reduction 78 times over. That forecast emissions increase from 1990 to 2020 is also a third larger than the combined 1990 emissions of the major rich countries.

Finally there is the ROW countries, nearly half the World’s population now live and where emissions increased by 130% between 1990 and 2013.

To put these figures in context, we need to look at population figures, which are available from the World Bank7.

The big CO2 emitters in 1990 were the First and Second World countries. Over two-thirds of global emissions were produced by a quarter of the population. Those same countries now produce 40% of global emissions and have 20% of the global population. The population has grown, but only by 10%. In some of the countries it is already falling. China’s population grew by 20%, India’s by 44% and the Rest of the World by 55%, giving a global population growth of 35%. Looking at CO2 emissions in tonnes per capita puts the CO2 emissions problem into perspective.

China started from an extremely low base in terms of emissions per capita. It is unlikely to exceed the rich world’s 1990 emissions per capita in the next 10 years. However, due to slower population growth and its current stage of development, it is unlikely to be the major source of emissions growth through to 2050. It is likely to be overtaken by India, who in turn will be overtaken by the rest of the world before the end of the century. Unless very cheap non-CO2 emitting sources of energy are developed, global emissions will continue to grow. That emissions growth will be the result of genuine economic growth that will see grinding poverty disappear from every country that embraces the modern world.

The UK with less than 1% of the world’s population will continue to have no impact at all despite all the hype of having the World’s “greenest” energy policies. Even if the scariest scenarios of Lord Stern’s nightmares are true, there is absolutely no reason to continue with policies that are pushing ever greater numbers into fuel poverty and jeopardizing security of energy supply. The future impacts will be just the same, but with current policy, Britons will meet that future poorer than without. The British Government is like a doctor that prescribes useless medicine in the knowledge that it has nasty side effects. Most would agree that a GP who did that to a patient should be struck off, even if it were one patient in hundreds.

For the people who still genuinely believe that increasing CO2 emissions will cause catastrophic climate change there are two causes of action. First is to find a plentiful source of non-polluting energy where the full costs are less than coal, but just as reliable. There is genuine pollution from coal in the form of smog, so everyone should be in support of this. Shale gas, then thorium nuclear reactors might be a ways forward in the next few decades. Second is to far more accurately predict the catastrophic consequences of global warming, so adaptation can be made at minimal cost and waste of resources. Every prediction of short term catastrophe (e.g. worsening hurricanes) or a worsening situation (e.g. accelerating sea level rise) has proved to be false, hence the reliance on noisy publicists and political activists that discourage learning from past mistakes.

 

Please note that first time comments are moderated. I welcome debate. Please use the comments as a point of contact, with a request not to publish.

Kevin Marshall

Notes

  1. As reported by James Delingpole at Brietbart. Also reported at The Daily Mail, Bishop Hill, and Not a Lot of People Know That here and here.
  2. CDIAC is the Carbon Dioxide Information Analysis Centre. The 2014 Budget 1.0 contains estimates of CO2 emissions in tonnes of carbon equivalent for all countries from 1960 to 2013. I have converted the figures to tonnes of CO2.
  3. Australia, Canada, EU (the Western European 15, less UK), Japan and USA. This is most of what used to be called “First World”.
  4. This includes the former USSR countries, plus Eastern Europe. I have added in North Korea, Yugoslavia and Cuba.
  5. By definition this includes Central and South America, Africa, Middle East and South East Asia.
  6. Britain has committed to reduce its emissions by 30% of 1990 levels by 2020. China has pledged to “Reduce CO2 emissions per unit of GDP by 40–45% by 2020 compared to the 2005 level”. I assume 8% GDP growth and achieving a full 45% reduction, which is achievable. Similarly India has pledged to Reduce CO2 emissions per unit of GDP by 20–25% by 2020 compared to the 2005 level. Although it is unlikely to be achieved, based on emissions growth from 2005-2013, I have a assumed 7% GDP growth and achieving a minimum 20% reduction. For the other countries I have assumed half the emissions change from 1999-2013. This is likely to be an underestimate, as many other economies are growing emissions are a fast annual rate. For them this assumes a much reduced growth rate. Also many developed economies, particularly in Southern European showed sharp drops in emissions along with GDP in the credit crunch. They are now emerging, so should be expected to have higher emission growth rates.
  7. The 2020 population figures are assuming that each country’s population will change in the next seven years by the same number that it did in the previous seven. As world population growth in slowing, this might be a reasonable estimate. The result is a population increase of 550 million to 7,675 million.

Pages2K Revised Arctic Reconstructions

Climateaudit reports

Kaufman and the PAGES2K Arctic2K group recently published a series of major corrections to their database, some of which directly respond to Climate Audit criticism. The resulting reconstruction has been substantially revised with substantially increased medieval warmth. His correction of the contaminated Igaliku series is unfortunately incomplete and other defects remain.

This post is on comparing the revised reconstruction with other data. In the comments Jean S provides a graph that compares the revised graph in red with the previous version in black. I have added some comparative time periods.

  1. The Maunder minimum of 1645-1715 corresponds to a very cold period in the Arctic. The end of the minimum was associated with a rebound in temperatures.
  2. The Dalton minimum of 1790-1820 corresponds to a period of sharply declining temperatures, with the end of the period being the coldest in 2,000 years. The end of the minimum was associated with a rebound in temperatures.
  3. The early twentieth century shows about 1.1oC of warming from trough to peak in a time period that corresponds to the 1911-1944 trough-to-peak warming of the global temperature series. It is about twice the size of that calculated globally by HADCRUT4 and GISTEMPa, consistent with there being greater fluctuations in average temperatures at the poles than in the tropics.
  4. The late twentieth century shows about 0.5oC of warming from trough to peak in a time period that corresponds to the 1976-1998 trough-to-peak warming of the global temperature series. This is broadly in line with that calculated globally by HADCRUT4 and GISTEMPa. This possibly corroborates data of individual weather stations having a warming adjustment bias (e.g. Reykjavik and Rutherglen) along with the national data sets of USA (Steve Goddard) and Australia (Jennifer Marohasy and Joanne Nova). Most of all, Paul Homewood has documented adjustment biases in the Arctic data sets.
  5. The proxy data shows a drop in average temperatures from the 1950s to 1970s. The late twentieth century warming appears to be a mirrored rebound of this cooling. Could the measured reductions in Arctic sea ice cover since 1979 partly be due to a similar rebound?

In conclusion, the Pages2K Arctic reconstruction raises some interesting questions, whilst corroborating some things we already know. It demonstrates the utility of these temperature reconstructions. As Steve McIntyre notes, the improvements partly came about through recognizing the issues in the past data set. Hopefully the work will continue, along with trying to collect new proxy data and refine existing techniques of analysis.

UPDATE 23.00

In the above, it is evident that the early twentieth century (c.1911-1944) Arctic warming in the revised reconstruction was twice the size of late twentieth century (c.1976-1978) warming, when global temperature anomalies show the later period as being greater in size. Steve McIntyre’s latest post shows that at least part of the answer may lie in the inclusion of the Okshola, Norway speleothem O18 and Renland, Greenland O18 series. These proxies both show a downturn at the end of the twentieth century. This might conceivably be a much greater influence on the discrepancy than either adjustment biases in temperature data, or differences between actual, not fully known, temperature anomalies between the Arctic region and the World. However, we will get a better understanding by eliminating the obvious outliers in the proxies and by continuing to positively seeking to eliminate bias in the global surface temperature anomalies.

Kevin Marshall

Notes

  1. Earlier this year I calculated the early twentieth century warming rates for the HADCRUT and GISTEMP series. They are


  2. From the same posting the 1976-1998 warming rates are



     

Prof Lewandowsky – Where is the overwhelming evidence of climate change?

On Stephan Lewandowsky’s blog (funded by the Australian people) he claims that there is overwhelming evidence of climate change. My question is as follows

You claim that there is “overwhelming scientific evidence on climate change”. Does this apply to:-

  1. The trivial proposition that there is a greenhouse effect, so a rise in GHG levels will cause some rise in temperature?

    OR

  2. The non-trivial proposition that the unmitigated increase in GHG levels will lead to significant warming with catastrophic consequences?

The trivial proposition is something for a few academics to ponder. It is only when there is reasonable scientific evidence for the non-trivial proposition that a global policy to mitigate could be seriously contemplated.

Having attended John Cook’s lecture at Bristol University a few days ago, I found out that the vast survey of academic papers found a 97% consensus was about belief in the trivial proposition, and some of the papers were authored by non-scientists. That is, Cook presented weak, secondary, evidence of the trivial proposition.

Cook’s lecture also mentioned the four Hiroshima bombs a second of heat accumulation in the climate system since 1998, the widget for which you have on the left-hand side of this blog. Stated this way, there appears to be a non-trivial amount of warming, that anybody can perceive. It is equivalent to the average temperature of the ocean’s increasing at a rate less than 0.0018oC per annum. That is weak evidence for the trivial proposition.

So where is the overwhelming evidence that can justify policy?


This gives rise to a question that Australian citizen’s may one to raise with their elected representatives.

Should Australian taxpayers be funding a partisan blog that is strongly critical of mainstream political opinion, whose sole current contributor is a non-Australian working outside of Australia?

Kevin Marshall

Michael Mann’s bias on Hockey Sticks

Two major gripes of mine with the “Climate Consensus” are their making unsubstantiated claims from authority, and a total failure to acknowledge when one of their own makes stupid, alarmist comments that contradict the peer-reviewed consensus.

An example is from Professor Michael Mann commenting on his specialist subject of temperature reconstructions of the past for a Skeptical science “97% Consensus” spin-off campaign.


I will break this statement down.

“There are now dozens of hockey sticks and they all come to the same basic conclusion”

His view is that warming is unprecedented, shown by dozens of hockey sticks that replicate his famous graph in the UNIPCC Third Assessment Report of 2001.

Rather than look at the broader picture warming being unprecedented on any time scale1, I will concentrate on this one thousand year period. If a global reconstruction shows a hockey stick, then (without strong reasoned arguments to the contrary) one would expect the vast majority of temperature reconstructions from actual sites by various methods to also show hockey sticks

CO2Science.com, in their Medieval Warm Period Project, have catalogued loads of these reconstructions from all over the world. They split them into two categories – quantitative and qualitative differentials in the average temperature estimates between the peak of the medieval warm period and now.

It would seem to me that Mann is contradicted by the evidence of dozens of studies, but corroborated by only a few. Mann’s statement of dozens of hockey sticks reaching the same basic conclusion ignores the considerable evidence to the contrary.

“The recent warming does appear to be unprecedented as far back as we can go”

Maybe, as Mann and his fellow “scientists” like to claim, that the people behind this website are in “denial” of the science. Maybe they have just cherry-picked a few studies from a much greater number of reconstructions. So let us look at the evidence the SkS team provide. After all, it is they who are running the show. Under their article on the medieval warm period, there is the following graph of more recent climate reconstructions.


It would seem the “Mann EIV” reconstruction in green does not show a hockey stick, but flat (or gently rising) temperatures from 500-1000 AD; falling temperatures to around 1800; then an uptick starting decades before the major rise in CO2 levels post 1945. The twentieth century rise in temperatures appears to be about half the 0.7oC recorded by the thermometers, leading one to suspect that reconstructions understate past fluctuations in temperature as well. The later Ljungqvist reconstructions shows a more pronounced medieval warm period and a much earlier start of the current warming phase, in around 1700. This is in agreement with the Moberg and Hegerl reconstructions. Further the Moberg reconstruction has a small decline in temperatures post 1950.

Even worse, the graphic was from the Pages2K site. On temperature reconstructions of the last two millennia Pages2K state:-

Despite significant progress over the last few decades, we still do not sufficiently understand the precise sequence of changes related to regional climate forcings, internal variability, system feedbacks, and the responses of surface climate, land-cover, and bio- and hydro-sphere.

Furthermore, at the decadal-to-centennial timescale we do not understand how sensitive the climate is to changes in solar activity, frequency of volcanic eruptions, greenhouse gas and aerosol concentration, and land cover.

So Michael Mann’s statement if warming being unprecedented is contradicted by peer-reviewed science. Skeptical Science published this statement when it was falsified by Mann’s own published research and that of others.

“But even if we didn’t have that evidence, we would still know that humans are warming the planet, changing the climate and that represent a threat if we don’t do something about it”

There is no corroborating evidence to the climate models from temperature reconstructions. In fact, empirical data shows that the models may be claiming as human-caused temperature increases that are naturally-caused, but for reasons not fully understood. So the “knowing” must be assumed to be from belief, just as the threat and the ability of the seven billion “us” to counter that threat are beliefs as well.

Kevin Marshall

 

Notes

  1. The emergence from the Younger Dryas cooling period 11,500 years ago was at least 10 times the warming of the past 100 years, and was maybe in a period of less than 300 years. See WUWT article here, or the emerging story on the causes here.

Theconsensusproject – unskeptical misinformation on Global Warming

Summary

Following the publication of a survey finding a 97% consensus on global warming in the peer-reviewed literature the team at “skepticalscience.com” launched theconsensusproject.com website. Here I evaluate the claims using two of website owner John Cook’s own terms. First, that “genuine skeptics consider all the evidence in their search for the truth”. Second is that misinformation is highly damaging to democratic societies, and reducing its effects a difficult and complex challenge.

Applying these standards, I find that

  • The 97% consensus paper is very weak evidence to back global warming. Stronger evidence, such as predictive skill and increasing refinement of the human-caused warming hypothesis, are entirely lacking.
  • The claim that “warming is human caused” has been contradicted at the Sks website. Statements about catastrophic consequences are unsupported.
  • The prediction of 8oF of warming this century without policy is contradicted by the UNIPCC reference.
  • The prediction of 4oF of warming with policy fails to state this is contingent on successful implementation by all countires.
  • The costs of unmitigated warming and the costs of policy and residual warming are from cherry-picking from two 2005 sources. Neither source makes the total claim. The claims of the Stern Review, and its critics, are ignored.

Overall, by his own standards, John Cook’s Consensus Project website is a source of extreme unskeptical misinformation.

 

Introduction

Last year, following the successful publication of their study on “Quantifying the consensus on anthropogenic global warming in the scientific literature“, the team at skepticalscience.com (Sks) created the spinoff website theconsensusproject.com.

I could set some standards of evaluation of my own. But the best way to evaluate this website is by Sks owner and leader, John Cook’s, own standards.

First, he has a rather odd definition of what skeptic. In an opinion piece in 2011 Cook stated:-

Genuine skeptics consider all the evidence in their search for the truth. Deniers, on the other hand, refuse to accept any evidence that conflicts with their pre-determined views.

This definition might be totally at odds with the world’s greatest dictionary in any language, but it is the standard Cook sets.

Also Cook co-wrote a short opinion pamphlet with Stephan Lewandowsky called The Debunking Handbook. It begins

It’s self-evident that democratic societies should base their decisions on accurate information. On many issues, however, misinformation can become entrenched in parts of the community, particularly when vested interests are involved. Reducing the influence of misinformation is a difficult and complex challenge.

Cook fully believes that accuracy is hugely important. Therefore we should see evidence great care in ensuring the accuracy of anything that he or his followers promote.

 

The Scientific Consensus

The first page is based on the paper

Cooks definition of a skeptic considering “all the evidence” is technically not breached. With over abstracts 12,000 papers evaluated it is a lot of evidence. The problem is nicely explained by Andrew Montford in the GWPF note “FRAUD, BIAS AND PUBLIC RELATIONS – The 97% ‘consensus’ and its critics“.

The formulation ‘that humans are causing global warming’ could have two different meanings. A ‘deep’ consensus reading would take it as all or most of the warming is caused by humans. A ‘shallow’ consensus reading would imply only that some unspecified proportion of the warming observed is attributable to mankind.

It is the shallow consensus that the paper followed, as found by a leaked email from John Cook that Montford quotes.

Okay, so we’ve ruled out a definition of AGW being ‘any amount of human influence’ or ‘more than 50% human influence’. We’re basically going with Ari’s porno approach (I probably should stop calling it that) which is AGW= ‘humans are causing global warming’. e.g. – no specific quantification which is the only way we can do it considering the breadth of papers we’re surveying.

There is another aspect. A similar methodology applied to social science papers produced in the USSR would probably produce an overwhelming consensus supporting the statement “communism is superior to capitalism”. Most papers would now be considered worthless.

There is another aspect is the quality of that evidence. Surveying the abstracts of peer-reviewed papers is a very roundabout way of taking an opinion poll. It is basically some people’s opinions of others implied opinions from short statements on tangentially related issues. In legal terms it is an extreme form of hearsay.

More important still is whether as a true “skeptic” all the evidence (or at least the most important parts) has been considered. Where is the actual evidence that humans cause significant warming? That is beyond the weak correlation between rising greenhouse gas levels and rising average temperatures. Where is the evidence that the huge numbers of climate scientists have understanding of their subject, demonstrated by track record of successful short predictions and increasing refinement of the human-caused warming hypothesis? Where is the evidence that they are true scientists following in the traditions of Newton, Einstein, Curie and Feynman, and not the followers of Comte, Marx and Freud? If John Cook is a true “skeptic”, and is presenting the most substantial evidence, then climate catastrophism is finished. But if Cook leaves out much better evidence then his survey is misinformation, undermining the case for necessary action.

 

Causes of global warming

The next page is headed.

There is no exclusion of other causes of the global warming since around 1800. But, with respect to the early twentieth century warming Dana Nuccitelli said

CO2 and the Sun played the largest roles in the early century warming, but other factors played a part as well.

However, there is no clear way of sorting out the contribution of the relative components. The statement “the causes of global warming are clear” is false.

On the same page there is this.

This is a series of truth statements about the full-blown catastrophic anthropogenic global warming hypothesis. Regardless of the strength of the evidence in support it is still a hypothesis. One could treat some scientific hypotheses as being essentially truth statements, such as that “smoking causes lung cancer” and “HIV causes AIDS”, as they are so very strongly-supported by the multiple lines of evidence1. There is no scientific evidence provided to substantiate the claim that global warming is harmful, just the shallow 97% consensus belief that humans cause some warming.

This core “global warming is harmful” statement is clear misinformation. It is extremely unskeptical, as it is arrived at by not considering any evidence.

 

Predictions and Policy

The final page is in three parts – warming prediction without policy; warming prediction with policy; and the benefits and costs of policy.

Warming prediction without policy

The source info for the prediction of 8oF (4.4oC) warming by 2100 without policy is from the 2007 UNIPCC AR4 report. It is now seven years out of date. The relevant table linked to is this:-

There are a whole range of estimates here, all with uncertainty bands. The highest has a best estimate of 4.0oC or 7.2oF. They seem to have taken the highest best estimate and rounded up. But this scenario is strictly for the temperature change at 2090-2099 relative to 1980-1999. This is for a 105 year period, against an 87 year period on the graph. Pro-rata the best estimate for A1F1 scenario is 3.3oC or 6oF.

But a genuine “skeptic” considers all the evidence, not cherry-picks the evidence which suit their arguments. If there is a best estimate to be chosen, which one of the various models should it be? In other areas of science, when faced with a number of models to use for future predictions the one chosen is the one that performs best. Leading climatologist, Dr Roy Spencer, has provided us with such a comparison. Last year he ran 73 of the latest climate CIMP5 models. Compared to actual data every single one was running too hot.

A best estimate on the basis of all the evidence would be somewhere between zero and 1.1oC, the lowest figure available from any of the climate models. To claim a higher figure than the best estimate of the most extreme of the models is not only dismissing reality, but denying the scientific consensus.

But maybe this hiatus in warming of the last 16-26 years is just an anomaly? There are at possibly 52 explanations of this hiatus, with more coming along all the time. However, given that they allow for natural factors and/or undermine the case for climate models accurately describing climate, the case for a single extreme prediction of warming to 2100 is further undermined. To maintain that 8oF of warming is – by Cook’s own definition – an extreme case of climate denial.

Warming prediction with policy

If the 8oF of predicted human-caused warming is extreme, then a policy that successfully halves that potential warming is not 4oF, but half of whatever the accurate prediction would be. But there are further problems. To be successful, that policy involves every major Government of developed countries reducing emissions by 80% (least including USA, Russia, EU, and Japan) by around 2050, and every other major country (at least including Russia, China, India, Brazil, South Africa, Indonesia and Ukraine) constraining emissions at current levels for ever. To get all countries to sign-up to such a policy combatting global warming over all other commitments is near impossible. Then take a look at the world map in 1925-1930 and see if you could reasonably have expected those Governments to have signed commitments binding on the Governments of 1945, let alone today. To omit policy considerations is an act of gross naivety, and clear misinformation.

The benefits and costs of policy

The benefits and costs of policy is the realm of economics, not of climatology. Here Cook’s definition of skeptic does not apply. There is no consensus in economics. However, there are general principles that are applied, or at least were applied when I studied the subject in the 1980s.

  • Modelled projections are contingent on assumptions, and are adjusted for new data.
  • Any competent student must be aware of the latest developments in the field.
  • Evaluation of competing theories is by comparing and contrasting.
  • If you are referencing a paper in support of your arguments, at least check that it does just that.

The graphic claims that the “total costs by 2100” of action are $10 trillion, as against $20 trillion of inaction. The costs of action are made up of more limited damages costs. There are two sources for this claim, both from 2005. The first is from “The Impacts and Costs of Climate Change”, a report commissioned by the EU. In the Executive Summary is stated:-

Given that €1.00 ≈ $1.20, the costs of inaction are $89 trillion and of reducing to 550ppm CO2 equivalent (the often quoted crucial level of 2-3 degrees of warming from a doubling of CO2 levels above pre-industrial levels) $38 trillion, the costs do not add up. However, the average of 43 and 32 is 37.5, or about half of 74. This gives the halving of total costs.

The second is from the German Institute for Economic Research. They state:-

If climate policy measures are not introduced, global climate change damages amounting to up to 20 trillion US dollars can be expected in the year 2100.

This gives the $20 trillion.

The costs of an active climate protection policy implemented today would reach globally around 430 billion US dollars in 2050 and around 3 trillion US dollars in 2100.

This gives the low policy costs of combatting global warming.

It is only by this arbitrary sampling of figures from the two papers that the websites figures can be established. But there is a problem in reconciling the two papers. The first paper has cumulative figures up to 2100. The shorthand for this is “total costs by 2100“. The $20 trillion figure is an estimate for the year 2100. The statement about the policy costs confirms this. This confusion leads the policy costs to be less than 0.1% of global output, instead of around 1% or more.

Further the figures are contradicted by the Stern Review of 2006, which was widely quoted in the UNIPCC AR4. In the summary of conclusions, Stern stated.

Using the results from formal economic models, the Review estimates that if we don’t act, the overall costs and risks of climate change will be equivalent to losing at least 5% of global GDP each year, now and forever. If a wider range of risks and impacts is taken into account, the estimates of damage could rise to 20% of GDP or more.

In contrast, the costs of action – reducing greenhouse gas emissions to avoid the worst impacts of climate change – can be limited to around 1% of global GDP each year.

The benefit/cost ratio is dramatically different. Tol and Yohe provided a criticism of Stern, showing he used the most extreme estimates available. A much fuller criticism is provided by Peter Lilley in 2012. The upshot is that even with a single prediction of the amount and effects of warming, there is a huge range of cost impacts. Cook is truly out of his depth when stating single outcomes. What is worse is that the costs and effectiveness of policy to greenhouse emissions is far greater than benefit-cost analyses allow.

 

Conclusion

To take all the evidence into account and to present the conclusions in a way that clearly presents the information available, are extremely high standards to adhere to. But theconsensusproject.com does not just fail to get close to these benchmarks, it does the opposite. It totally fails to consider all the evidence. Even the sources it cites are grossly misinterpreted. The conclusion that I draw is that the benchmarks that Cook and the skepticalscience.com team have set are just weapons to shut down opponents, leaving the field clear for their shallow, dogmatic and unsubstantiated beliefs.

Kevin Marshall

 

Notes

  1. The evidence for “smoking causes lung cancer” I discuss here. The evidence for “HIV causes AIDS” is very ably considered by the AIDS charity AVERT at this page. AVERT is an international HIV and AIDS charity, based in the UK, working to avert HIV and AIDS worldwide, through education, treatment and care. – See more here.
  2. Jose Duarte has examples here.

Why Climate Change Mitigation Policies Will Always Fail

All climate mitigation policies will be of net harm to any country implementing them. There are three reasons for this.

First, mitigation policies will not eliminate all the projected harm of climate change. Policy replaces the unmitigated cost of climate change with a policy cost and a residual climate change cost.

Second, policy proposals are only for the rich countries to reduce emissions and emerging economies to constrain the growth. That means residual climate change costs will be greater, and the burden of cost of reductions will fall on a number of countries will a minority of, and a rapidly diminishing share of, global emissions. Even with the rich nations all succeeding in the British target of 80% reduction by 2050 will still mean global emission levels higher than currently.

Third, there is mounting evidence that actual mitigation costs per tonne of CO2 equivalent saved are considerably more than the economic models assume.

 

Introduction

The Stern Review Summary of Conclusions stated on page vi

Using the results from formal economic models, the Review estimates that if we don’t act, the overall costs and risks of climate change will be equivalent to losing at least 5% of global GDP each year, now and forever. If a wider range of risks and impacts is taken into account, the estimates of damage could rise to 20% of GDP or more.

In contrast, the costs of action – reducing greenhouse gas emissions to avoid the worst impacts of climate change – can be limited to around 1% of global GDP each year.

The Review further stated on pages xvi-xvii

Preliminary calculations adopting the approach to valuation taken in this Review suggest that the social cost of carbon today, is of the order of $85 per tonne of CO2……. This number is well above marginal abatement costs in many sectors.

Many objections to the report look at the cost of climate change. Little discussed are the theoretical issues in implementing a successful policy. By “successful” I mean where the expected outturn of the policy is less than the projected costs of climate change.

 

The basic case

As the Stern review is saying that globally we should replace one set of costs – the projected costs of climate change – will the much lesser costs of climate. Graphically, we replace the climate change costs in blue with policy costs in orange. Costs are positive and benefits negative.

The case for policy is clear.

 

Climate change costs not completely eliminated

Peter Lilley, in his 2012 GWPF report “WHAT IS WRONG WITH STERN?” states on page 8

The benefit of preventing (climate change) entirely would, on his figures, be at least 5% of GDP – but to do so would require not just stopping all further carbon emissions but removing all those accumulated since the industrial revolution. The action he proposes to reduce the worst impacts of global warming by stabilising the atmospheric concentration of greenhouse gases at 550 ppm would, using Stern’s methodology, save some 3.1% of GDP – not 5%.

The mitigation policy seeks to stabilize total greenhouse gas levels are a level equivalent to about double the level of CO2 in 1780.


The case for policy is still clear.

 

Rich Countries Policy Burden

It is accepted that

  1. Rich countries are responsible for most of climate change.
  2. The adverse consequences of unmitigated climate change will be disproportionately endured by the less developed nations (LDNs).

Therefore the moral argument is that the rich countries should bear the cost of policy and they should compensate the LDNs for the future harm that they will endure. The compensation could then be used to offset the harm of climate change.

Rich countries have a smaller population than the LDNs. The policy costs (in orange) for them will more than double. Similarly, compensation (in burnt orange) will be much larger for the rich countries to pay out than for the LDNs who receive it in income. Finally the post-policy climate change costs (in blue) will be still larger for the LDNs.


The rich countries may or may not be better off after policy. Further the LDNs still suffer some harm.

 

Increasing Emissions amongst the emerging nations

Policy must include the emerging nations. This is why.

I have arbitrarily split the countries of the World into three groups

  1. ACEJU – The big industrialised carbon emitters – Australia, Canada, EU, Japan and USA.
  2. BICS – The large emerging nations of Brazil, India, China and South Africa.
  3. ROW – Rest of the World.

The World Bank has data on CO2 emissions by country for the period 1990 to 2010. From this, I compiled the following graph.


In the period 1990 to 2010, annual global CO2 emissions increased by 11.4 billion tonnes, or 51%. To return to 1990 emissions levels would require one group to cease emissions entirely and the other two groups to maintain emissions at 2010 levels. The future emissions growth path potentially makes the problem worse. Consider the comparative growth in population.


Despite the BICS countries increasing its emissions by 230%, emissions per capita are still less than 40% of those of the ACEJU block. Further, the explosive growth of the BICS has not been matched by the Rest of the World. Here the emissions have grown by 45%, but population has grown by 42%. Emissions per capita are still only 35% of those of the AJEJU block.

Any policy reductions by the rich nations will be more than offset by future emissions growth in the rest of the world. There will be little reduction in climate change costs, for either the policy countries or non-policy countries. The situation becomes like this.


The non-policy countries will still see a reduction, but that might be small, even if the policy countries are successful. The disadvantage to the policy countries is inversely related to proportion of global emissions they have at the end of the policy. That in turn is influenced by the future emissions growth in the non-policy countries, as well as the proportion of global emissions in a baseline year.

 

Peer-reviewed costs of Climate Change and Actual Costs of Mitigation

The Stern review should not be taken as the only source. The UNIPCC AR4 Summary for Policymakers in 2007 stated on page 22.

Peer-reviewed estimates of the social cost of carbon in 2005 average US$12 per tonne of CO2, but the range from 100 estimates is large (-$3 to $95/tCO2).

The average social cost is just a seventh of the Stern Review, which was not a study that has been peer-reviewed.

In a previous posting, I calculated that the subsidy of offshore wind farms was equivalent to 3.8 times Stern’s social cost of carbon, and 27 times that of the $12 average of peer-reviewed studies quotes by the UNIPCC. This was a low estimate, not including transmission costs. There might be cheaper ways of abating CO2, but there are lot of failed policies as well. There is also the impact on economic growth to consider, which for emerging economies. So a more realistic situation of a “successful” mitigation policy will look like the one below. That is “successful” in achieving the emission reduction targets.

Points for further investigation

There are a number of issues that are raised in my mind that need further work.

  1. The social cost of carbon defines the expected harm from climate change per tonne of CO2. If a country has quantitative emissions reduction targets, then an absolute upper limit in annual spend can be defined when achieving that target.
  2. This would enable identification of the success of policies within a national plan, along with the overall success of that plan.
  3. The expected CO2 emissions growth in non-policy countries, along with including other greenhouse gas emissions within the analysis.

     

Conclusion

There is no combination of mitigation policies that can produce a less costly outcome than doing nothing. Any government unilaterally (or as part of group representing a minority of global emissions) pursuing such policies will be imposing net harm on its own people, no matter how large the claimed potential impacts of climate change. This conclusion can be reached even if the extreme views of the Stern Review are taken as the potential costs of climate change.

Kevin Marshall

 

Notes

The comparison of emissions growth between countries is derived from “The Climate Fix” by Roger Pielke Jnr. This enlarges on a comment made at Australian Climate Madness blog.

All first time comments are moderated. Please use the comments as a point of contact.

Update 25/02 17.30. Summary and “Points for further investigation” included, along with text changes

The Nub of the Climate Change Policy Problem

Over at the Conversation, Climate Scientist Mike Hulme has a short article “Science can’t settle what should be done about climate change“. He argues the politics, not science, must take centre stage. He makes four points.

  • How do we value future public goods and natural assets relative to their value today?
  • Is “commodifying” nature appropriate?
  • The morality of technologies for mitigation or adaptation. For instance, fracking and GM crops.
  • The role of national governments against multilateral treaties or international governing bodies. Also the consequent impacts on democracy.

Christopher Wright (Professor of Organisation Studies at University of Sydney) commented

The one problem I have with the above analysis is that the focus on climate science has been a quite deliberate strategy by those seeking to deny or cast doubt on the urgency of the problem. This has meant the debate has continually stalled around issues of whether climate change is a problem or not. The science highlights that it is a very big problem indeed. However, while the science continues to be questioned, we will be unable to have the serious policy conversation about what we need to do to avoid catastrophic changes to our ecosystem.

My reply (with references) is

Science might point to a very big problem, but it cannot translate that into coherent policy terms. Nor can it weigh that against the effectiveness of policies, nor the harms policies can cause. Economics is central to asking those questions. The key figure that encapsulates the predicted harm of climate change is the social cost of carbon SCC, expressed in tonnes of CO2 equivalent. In 2006 Stern measured this as $85/tCO21. A year later the AR4 SPM2 stated a range of -$3 to $95/tCO2 from peer reviewed studies, with an average of $12/tCO2.

The key figure for the effectiveness to policy is the marginal abatement cost. Basically this refers to the marginal cost of preventing a tonne of CO2 equivalent entering the atmosphere. For policy to be of net benefit, MAC needs to be less than SCC.

$85 is about £52, and $12 about £7.50. In the UK onshore wind turbines receive a direct subsidy equivalent to £98/tCO23 saved, and offshore £195/tCO2. Then there are the extra costs of transmission lines, and other costs which could double those figures.

Then you need to recognize that a global problem will not be solved by unilateralist policies by a country with producing less than 2% of global emissions. So the UK is impoverished now by harmful, ineffectual, policies, and still future generations suffer >90% of the consequences of unmitigated climate change. Mike Hulme’s four points above are in addition to this, weighing further against mitigation policy.

Notes

  1. The Stern review noted on pages xvi-xvii

    Preliminary calculations adopting the approach to valuation taken in this Review suggest that the social cost of carbon today, is of the order of $85 per tonne of CO2……. This number is well above marginal abatement costs in many sectors.

  2. The UNIPCC AR4 Summary for Policymakers in 2007 stated on page 22.

    Peer-reviewed estimates of the social cost of carbon in 2005 average US$12 per tonne of CO2, but the range from 100 estimates is large (-$3 to $95/tCO2).

  3. The renewables obligation credit (ROC) buy-out price is currently £42.02 per megawatt hour, as determined by OFGEM. The British renewable industry lobby group renewableUK, uses DECC’s carbon saving figure of 430g/kWh, as stated in an appendix to the Energy Efficiency Innovation Review in 2005. £42.02/.430 = £97.67. Onshore wind turbines get one ROC per MWh generated, offshore wind turbines 2 ROCs.

Kevin Marshall

Jo Nova discusses Mike Hulme’s four points here.

The Irony of Ironbridge

The traditional way of producing iron was in small batches, using charcoal as the fuel. In 1709 Abraham Darby I built the world’s first blast furnace fuelled by coke. This enabled a continuous process to be used for production, enabling much greater quantities to be produced. What is more, charcoal is derived from wood, which was by then becoming increasingly scarce in Britain. Coke comes from coal, of which there were increasingly plentiful supplies. The unit costs of iron production therefore came down for the reasons of increased productivity and a cheaper, more plentiful, energy source. Without this switch the industrial revolution would not have started. The reason for building the blast furnace in Coalbrookdale should be obvious.

Darby’s grandson Abraham Darby III used this cheap iron to build, in 1779 the world’s first bridge from fabricated from cast iron. The village by this bridge and the gorge encompassing Coalbrookdale are now known as Ironbridge. It is now a major tourist attraction.

There has been a coal-fired power station in the Ironbridge Gorge since the 1930s. The directions from the site of the original blast furnace are below. The original 200MW facility was replaced in 1969 and 1970 by the twin 500MW facilities seen today. In 2012, one of those facilities was modified to accept wooden pellets that are imported from North America. The will generate up to £100,000,000 a year in renewables obligation certificates, increasing the cost of the electricity to consumers by 75%.

Globally forests are still declining. Wood is a scarce resource and expensive, with the price only likely to increase. Known coal reserves are sufficient to supply current global requirements for centuries, is cheap and the price is falling. Ironbridge can now claim to both a birthplace of the industrial revolution, and a symbol of sending the benefits of the industrial revolution into reverse. Spot the irony.

1 Replicating Stern – The Costs of Climate Change and Policy Graph

One aspect of neoclassical economics that is extremely useful is the representation of an economic theory in a graphical form. Where would any introductory course be without Alfred Marshall’s supply and demand curves? For many years, the ideas of John Maynard Keynes’s ideas were synthesised in the Sir John Hicks’s IS-LM curves. These graphs have the advantage of enabling analysis of the logical consequences of changes in the overall context of the problem under consideration. In climate, there is a lot of shouting between the different camps, but what appears to be a complete inability to put the consequences of global warming and the mitigation policy option of globally constraining the growth of greenhouse gas emissions into their proper context. Therefore, when assumptions are changed, or new information becomes available, it is difficult to put those into the overall context of the “climate change” issue.

Sir Nicholas (now Lord) Stern’s report of 2006 (In the Summary of Conclusions) had the two ideas separated when it claimed

Using the results from formal economic models, the Review estimates that if we don’t act, the overall costs and risks of climate change will be equivalent to losing at least 5% of global GDP each year, now and forever. If a wider range of risks and impacts is taken into account, the estimates of damage could rise to 20% of GDP or more. In contrast, the costs of action – reducing greenhouse gas emissions to avoid the worst impacts of climate change – can be limited to around 1% of global GDP each year.

 

This leads to two offsetting sets of costs. The first is the “do-nothing approach” of letting greenhouse gas emissions spiral out of control, raising global temperatures by a number of degrees and throwing the weather systems out of control. The other is the policy costs of constraining the rise in emissions by switching to “cleaner” forms of living in general and energy-production in particular. It is should not be confused with a cost-benefit approach. Stern is proposing to exchange a very high set of costs in the distant future, with a much lower set of policy costs now. His proposal is not to incur costs in exchange for a stream of benefits (like when constructing a new motorway), but to minimize total costs of climate change and policy.

Constructing the graph

We are told by the climate scientists that some of the minor consequences of around 0.8oC of warming over the last century are already visible. But their climate models project this is utterly insignificant compared to what will happen if greenhouse gases continue to increase unchecked for the next century or more. The large increases in temperature – around 4oC to 7oC or higher – would cause massive disruption to the climate system. It is fair to say that as global temperatures increase, these costs would increase exponentially. These “costs” are in the broadest sense. They are not just the human costs of property damage, failed harvests, population migrations and land being submerged by rising seas. These include the damage to the eco-systems and species extinction. Assuming a top end of 7oC the cost curve would look something like this.

The relative cost scales 7oC of warming are set to be twenty times the costs of constraining global warming to 3oC, or the mid-range of estimates by the IPCC for a doubling of CO2 from pre-industrial levels of 280ppm, and an approximate policy target.

Conversely, the cost of stopping any more warming will be huge. Hugely aggressive policies would quickly stop any increases in emissions and could bring about major reductions. But such policies would bring to a halt the fast-growing economies of China and India, and would considerably worsen the recession in much of Europe. However, it is possible to postulate that low-cost policies that give the odd nudge here and there over a long period could reap large rewards. In line with climate costs, I have set the relative cost of constraining the rise in global temperatures to 3oC above the pre-industrial levels to 1. So the curve might look like the one below.

Combining the two curves gives a total cost graph.

The total costs curve is derived by the addition of the climate and policy cost curves.

This replicates Stern’s statement above. The “do-nothing” scenario is ten times more expensive than the optimal cost-minimization scenario.

Some points to note.

First is that the total cost curve has quite a wide minimum area. Even if a lot of the main policy targets are missed, doing something looks to be far better than doing nothing at all.

Second, is that cost minimization strategy is at a higher temperature level than the intersection of the curves. However, a risk-averse strategy (which most people would expect in avoiding a prospective global catastrophe) would aim for a somewhat lower temperature increase.

Third is that “policy” should be called mitigation policy. That is preventing climate change costs from occurring by constraining the rise in greenhouse gases. As will be seen later, the alternative (or complementary) adaptation policies are included within the climate costs curve. The full reasons will be explained later, but the main one is that climate mitigation is something that, by definition, needs to be tackled at a global level, whereas adaptation can be done at the local, country or regional levels.

Fourth, is a clear separation of mitigation policy considerations from the projections of climate science. Yet new information from the science and policy areas can be put into a total context of acting in the best interests of the planet and the human population.

Fifth, an issue with the policy curve is the change in gradient. There must exist a set of policy options which are low cost, high impact (LC-HI) as well as the high cost, low impact (HC-LI). There are two possible types of policies which should be avoided. First are those with costs, but with zero impact (C-ZI) and second are those with a net negative impact (NNI).

Sixth, any look at climate projections and policy options show they are all over the place. The assumptions of single curves are highly restrictive ones. But like in

Finally, on climate costs there is an issue with projections about future costs. The data we have is from less than one degree of warming, and a minute fraction of projected costs. As shall be shown, the handling of this issue is crucial.

Kevin Marshall

Follow

Get every new post delivered to your Inbox.

Join 35 other followers