UNFCCC Massively Overstates Impact of INDCs on 2100 Emissions

At the end of October UNFCCC Executive Secretary Christiana Figueres was reported by the BBC as saying

The INDCs have the capability of limiting the forecast temperature rise to around 2.7C by 2100, by no means enough but a lot lower than the estimated four, five, or more degrees of warming projected by many prior to the INDCs.

In the context of the objective of limiting prospective global warming to 2C this statement gives encouraging news. Already the policy proposals are most of the way towards that objective, so a final push at COP21 in Paris is all that is required.


The analysis by the UNFCCC shows that the policy proposals contained within the INDCs will make very little difference to trends in global emissions of greenhouse gases to 2030. In the accompanying literature, the UNFCCC makes no projections of the difference the INDCs will make beyond 2030. The claim that policy will limit forecast temperature rise to the 2.7C by 2100 is claimed by two other organisations, and is only referenced in a table at the very end of a separate technical annex without any discussion or endorsement. One of these, the IEA, achieves the projection by, post 2050, replacing forecasts contingent on the policy impact of the INDCs with an average of modelled RCP emissions pathways. The RCP website explicitly states that they are not forecasts of potential emissions or climate change, whether with or without policy action. It also states that any of the differences between the pathways be directly attributed to policy differences. The IEA thus replaces real emissions forecasts with data that is unrelated to the real world. The other claim, by Climate Action Tracker, has no explicit statement of how the increasing global emissions through to 2030 start tracking downwards post 2030. Contributing factors may include understating the emissions impact of India and China, along with excluding the likely increasing emissions in the coming decades from the poorest nations.

The claim that any agreement reached in Paris based on the INDCs will constrain to global average temperature rise to 2.7C by 2100 through constraining GHG emissions is therefore unsupported by any rigorous forecast of the policy impact in the referenced documents. Such forecasts are based on making a forecast without policy, then modelling the impact policy will make, stating the assumptions. With 40,000 people attending a conference, the UNFCCC could surely have set aside a couple of million dollars to obtain such a forecast from genuine experts.

In Detail

If Christiana Figueres is correct, the INDC submissions, covering the period 2015-2030 have dramatically changed the course of prospective warming getting two-thirds of the distance between the non-policy and the target of limiting warming to two degrees. Bjorn Lomborg’s recent paper “Impact of Current Climate Proposals” published in the Global Policy journal stated

All climate policies by the US, China, the EU and the rest of the world, implemented from the early 2000s to 2030 and sustained through the century will likely reduce global temperature rise about 0.17°C in 2100. These impact estimates are robust to different calibrations of climate sensitivity, carbon cycling and different climate scenarios. Current climate policy promises will do little to stabilize the climate and their impact will be undetectable for many decades.

Having read the policy proposals on a large number of INDCs I concur with Lomborg. There is very little in the INDCs that will alter the future course of warming. So why the difference between my reading and the UNFCCC? The Executive Secretary has the World’s leading experts behind her, so there must be substantial support for the claim. The BBC article provides a link to the UNFCCC Synthesis report on the aggregate effect of INDCs. The link is to a number of documents. The main document makes no attempt to project forward the policy impacts to 2100. In fact if it did, the prognosis would be similar to Lomborg’s. The main graphic in Figure 2, also as a separate file, is shown below.

The orange is the pre-INDC pledges, the yellow the INDCs and the blues various scenarios to stay below two degrees.

To the right is two graphics for 2025 and 2030. The yellow arrow is “Reduction due to INDCs” and the blue arrow “Remaining reduction for least-cost mitigation“. For 2030 the INDCs seem to get a quarter of the way to the desired reduction. There is nothing about trends beyond 2030. The graphic could not be clearer. If the INDCs are to obtain constrain emissions consistent to the 2C of warming, the increasing trend from 2010 to 2030 would have to be rapidly turned into a decreasing trend post 2030, with global emissions reduced by half in two decades. As the non-policy trend is for about 4.5C of warming, then to obtain a 2.7C forecast requires the INDCs to collectively cause emissions to peak and then start a downward trend.

It is clear that there is no mention at all of the 2.7C of warming by 2100. No bridge of the 70 years from the period covered by the INDCs to the end of the century. What is more there is nothing in the aggregate policy contained in INDCs that would cause global emissions to first peak, then be set on a downward trend. So where is the reference?

For that you need to look in the Technical Annex section M. Summary of results from other studies. Even then the text does not mention 2100, but table 6 does.

Instead of the UNFCCC making projections to 2100 on the basis of the INDCs for themselves, they use those of others. Yet the UNFCCC should have the expertise in projecting the impact of policy. I will look at three – that of another UN organisation and the two estimating 2.7C resulting from the INDCs.

UNEP Gap Report

The link within the footnote to table 6 is to the Executive Summary of the UNEP Emissions Gap Report 2015. The proper reference should have been to all the documents related to the Gap Report found here. The Executive Summary states

Full implementation of unconditional INDC results in emission level estimates in 2030 that are most consistent with scenarios that limit global average temperature increase to below 3.5 °C until 2100 with a greater than 66 per cent chance.

There is no actual projection from the INDCs. Rather, it looks at the emissions levels and emission trends in 2030 and compares them with modelled estimates that are similar. It is these modelled estimates that produce the 3.5C of warming in 2100. There is no reconciliation between the country-by-country INDCs and the overall global emissions scenarios. Rather it is just picking estimates that seem to fit at a global level. In terms of assessing the impacts of policy it is useless, as the modelled estimates may be markedly different from a forecast based on the latest information.

International Energy Agency (IEA) World Energy Outlook 2015

The link within the footnote to table 6 is to a press release for the IEA’s World Energy Outlook 2015. The footnote d. to table 6 gives an explanation of how the 2.7C projection was arrived at. In particular is the final point

To assess the impact on global average temperature increase, we used MAGICC with an emissions pathway post-2050 in between the representative concentration pathways (RCP) 4.5 and (RCP) 6 scenarios from the IPCC’s Fifth Assessment Report as this was interpreted as representing the best available trajectory compatible with IEA’s INDC Scenario.

The RCP (“Representative Concentration Pathways”) scenarios are explained on the RCP website

RCP 4.5: … is a stabilization scenario where total radiative forcing is stabilized before 2100 by employment of a range of technologies and strategies for reducing greenhouse gas emissions.

RCP 6.0: … is a stabilization scenario where total radiative forcing is stabilized after 2100 without overshoot by employment of a range of technologies and strategies for reducing greenhouse gas emissions.

Under “Characteristics and guidance” the website states (bold mine):-

The RCPs are named according to their 2100 radiative forcing level as reported by the individual modeling teams. …….

The RCPs are not forecasts or boundaries for potential emissions, land-use, or climate change. They are also not policy prescriptive in that they were chosen for scientific purposes to represent the span of the radiative forcing literature at the time of their selection and thus facilitate the mapping of a broad climate space. They therefore do not represent specific futures with respect to climate policy action (or no action) or technological, economic, or political viability of specific future pathways or climates. …..

The RCPs are four independent pathways developed by four individual modeling groups. The socioeconomics underlying each RCP are not unique; and, the RCPs are not a set or representative of the range of potential assumptions. …. The differences between the RCPs can therefore not directly be interpreted as a result of climate policy or particular socioeconomic developments. Any differences can be attributed in part to differences between models and scenario assumptions (scientific, economic, and technological).

The IEA has therefore used a hybrid of emissions scenarios as emissions forecasts to assess the impact policy when the group producing them has specifically said that these scenarios are not directly comparable and should not be used for policy purposes. In so doing, they implicitly make a set of assumptions about policy that may not relate to the real world and are definitely not related to the policies proposed within the INDCs.

Climate Action Tracker (CAT)

CAT tracks the INDCs from 32 nations that currently have about 80% of global emissions. Their estimate of the INDC impact until 2030 is broadly consistent with the UNFCCC. However, I am not sure where they obtain the historical emissions figures. For countries they appear to be from the World Resources Institute CAIT2.0. CAIT2.0 figures which are slightly different from those in the UNFCCC Country Briefs, but not markedly so in total. CAT’s methodology does have the advantage of providing a breakdown by country until 2030 between the BAU, but beyond 2030 details are distinctly hazy. The 2.7C claim is made on a briefing of 1st October 2015. The main graph behind the 2.7C estimate is reproduced below.

The impact of the INDCs is to see emissions peak about 2030, then gently fall through to the end of the century. From the detailed explanation it is not possible to determine how the emissions peak at the level as collectively the INDCs appear to show an upward trend. The reasons for this are probably from the following:-

India – The INDC that estimates a tripling of emissions between 2014 and 2030 was not available when the briefing was published, which only assumes a doubling. The country assessment for India then tries to reconcile the difference by some fancy assumptions (lower economic growth rates and a higher emissions intensity reduction than in the INDC), without adjusting the overall assessment. If CAT’s 5GtCO2e estimate of 2030 emissions turns out to be correct (9% of global emissions), it will only be emissions growth delayed not a lower emissions peak. It is unlikely that India’s emissions will peak at less than 10GtCO2e, equivalent to over 20% of 2010 global emissions.

China – will likely reach peak emissions prior to 2030, but that peak will be likely higher than the 13.6GtCO2e forecast The CAT country assessment admits this is the case, but makes no allowance in the emissions forecast.

Missing Countries – Most of Africa, along with Pakistan, Vietnam, Bangladesh, Thailand and Myanmar are missing from the sample. Collectively their current emissions are small, but in the coming decades the share will rise. Africa’s emissions will rise as most of the global population increase in the latter half of the century is forecast to be within the continent. In South Asia there is already economic growth above the world average that will likely continue as the poorer countries follow in the wake of India. By 2100 these countries could collectively have emissions greater than current emissions of the OECD and China combined.

Ambiguities in the INDCs – Many of the INDCs are highly ambiguous. The historical figures are inconsistent; the forecasts are opaque; some key figures are missing; and it is not clear if some pledges in the INDC are in addition to the others, or part of the whole. CAT maximises the impact, rather than trying to frame questions for the submitting countries to clarify. There should be an assessment of these pledge risk factors. These will likely reduce the estimated policy impact.

Without any other hidden assumptions, CAT’s methods are likely to massively overstate the impact of policy. Critically is how increasing global emissions though to 2030 become decreasing global emissions post 2030. As inferred above, I believe it is due to systematic understating emission projections in the sample countries and ignoring the growth in the other countries. It may also be due to making further policy assumptions for the period beyond 2030. We will only be able to assess the impact if CAT provide a full country-by country projections of emissions in 2100 for the sample countries for both BAU and with INDC scenarios, along with projections for the rest of the world. Putting the figures on a table, rather than spending time creating graphs from which figures have to be estimated, would ease the process. If proper forecasts have been generated (that is making a forecast without policy, then modelling the impact policy will make) then the outline figures will be available already.

Concluding Comments

The UNFCCC presents no evidence that policy contained within the INDC submissions will make more than a small difference to global emissions in 2100. Instead they rely on external organisations. One quite clearly substitutes real world forecasts with emissions scenarios that do not relate to real world situations, and assume implementation of policy quite different to that contained with the INDCs. The other is likely to have massively overstated the policy impacts, but a lack of any clear statements as to how the conclusions were arrived at means quantification is not possible. The claims that the policy pledges within the INDCs will massively alter global emissions levels in the latter part of this century (and, subject to the climate models being broadly correct, the rise in global average temperatures) are without any proper foundation. The UNFCCC Executive Secretary Christiana Figueres is has made a misleading statement to drive through policies that are both costly and ineffective.

Such forecasts are based on making a forecast without policy, then modelling the impact policy will make, stating the assumptions. With 40,000 people attending a conference, the UNFCCC could surely have set aside a couple of million dollars to obtain a rigorous forecast from leading experts in that field. The methodology is fairly straightforward. It requires making a forecast for each country without policy, then modelling the impact policy will make, stating the assumptions. The important parts are data gathering, adhering rigorously to a consistent method and leaving an audit trail.

Kevin Marshall

aTTP falsely attacks Bjorn Lomborg’s “Impact of Current Climate Proposals” Paper

The following is a comment to be posted at Bishop Hill, responding to another attempt by blogger ….andThenThere’sPhysics to undermine the work of Bjorn Lomborg. The previous attempt was discussed here. This post includes a number of links, as well as a couple of illustrative screen captures at the foot of the table.

aTTP’s comment is

In fact, you should read Joe Romm’s post about this. He’s showing that the INDCs are likely to lead to around 3.5C which I think is relative to something like the 1860-1880 mean. This is very similar to the MIT’s 3.7, and quite a bit lower than the RCP8.5 of around 4.5C. So, yes, we all know that the INDCs are not going to do as much as some might like, but the impact is likely to be a good deal greater than that implied by Lomborg who has essentially assumed that we get to 2030 and then simply give up.

Nov 11, 2015 at 9:31 AM | …and Then There’s Physics

My Comment

aTTP at 9.31 refers to Joe Romm’s blog post of Nov 3 “Misleading U.N. Report Confuses Media On Paris Climate Talks“. Romm uses Climate Interactive’s Climate Scoreboard Tool to show the INDC submissions (if fully implemented) will result in 3.5°C as against the 4.5°C in the non-policy “No Action” Scenario. This is six times the claimed maximum impact of 0.17°C claimed in Lomberg’s new paper. Who is right? What struck me first was that Romm’s first graph, copied straight from the Climate Interactive’s seem to have a very large estimate for emissions in the “No Action” Scenario producing. Downloading the underlying data, I find the “No Action” global emissions in 2100 are 139.3 GtCO2e, compared with about 110 GtCO2e in Figure SPM5(a) of the AR5 Synthesis Report for the RCP8.5 scenario high emissions scenario. But it is the breakdown per country or region that matters.

For the USA, without action emissions are forecast to rise from 2010 to 2030 by 40%, in contrast to a rise of just 9% in the period 1990 to 2010. It is likely that emissions will fall without policy and will be no higher in 2100 than in 2010. The “no action” scenario overestimates 2030 emissions by 2-3 GtCO2e in 2030 and about 7-8 GtCO2e in 2100.

For the China the overestimation is even greater. Emissions will peak during the next decade as China fully industrializes, just as emissions peaked in most European countries in the 1970s and 1980s. Climate Interactive assumes that emissions will peak at 43 GtCO2e in 2090, whereas other estimates that the emissions peak will be around 16-17 GtCO2e before 2030.

Together, overestimations of the US and China’s “No Action” scenarios account for over half 55-60 GtCO2e 2100 emissions difference between the “No Action” and “Current INDC” scenarios. A very old IT term applies here – GIGO. If aTTP had actually checked the underlying assumptions he would realise that Romm’s rebuttal of Lomborg based on China’s emission assumptions (and repeated on his own blog) are as false as claiming that the availability of free condoms is why population peaks.

Links posted at http://manicbeancounter.com/2015/11/11/attp-falsely-attacks-bjorn-lomborgs-impact-of-current-climate-proposals-paper/

Kevin Marshall


Figures referred to (but not referenced) in the comment above

Figure 1: Climate Interactive’s graph, referenced by Joe Romm.

Figure 2: Reproduction of Figure SPM5(a) from Page 9 of the AR5 Synthesis Report.


Update – posted the following to ATTP’s blog


Lomborg and the Grantham Institute on the INDC submissions

Bjorn Lomborg has a new paper published in the Global Policy journal, titled: Impact of Current Climate Proposals. (hattip Bishop Hill and WUWT)

From the Abstract

This article investigates the temperature reduction impact of major climate policy proposals implemented by 2030, using the standard MAGICC climate model. Even optimistically assuming that promised emission cuts are maintained throughout the century, the impacts are generally small. ………… All climate policies by the US, China, the EU and the rest of the world, implemented from the early 2000s to 2030 and sustained through the century will likely reduce global temperature rise about 0.17°C in 2100. These impact estimates are robust to different calibrations of climate sensitivity, carbon cycling and different climate scenarios. Current climate policy promises will do little to stabilize the climate and their impact will be undetectable for many decades.

That is pretty clear. COP21 in Paris is a waste of time.

An alternative estimate is provided in a paper by Boyd, Turner and Ward (BTW) of the LSE Grantham Institute, published at the end of October.

They state

The most optimistic estimate of global emissions in 2030 resulting from the INDCs is about halfway between hypothetical ‘business as usual’ and a pathway that is consistent with the 2°C limit

The MAGICC climate model used by both Lomborg & the IPCC predicts warming of about 4.7°C under BAU, implying up to a 1.35°C difference from the INDCs, compared to the 0.17°C maximum calculated by Lomborg, 8 times the amount. Lomborg says this is contingent on no carbon leakage (exporting industry from policy to non-policy countries), whilst citing studies showing that it could offset 10-40%, or even over 100% of the emissions reduction. So the difference between sceptic Lomborg and the mighty LSE Grantham Institute is even greater than 8 times. Yet Lomborg refers extensively to the August Edition of BTW. So why the difference? There is no explicit indication in BTW of how they arrive at their halfway conclusion. nor a comparison by Lomborg.

Two other estimates are from the UNFCCC, and Climate Action Tracker. Both estimate the INDCs will constrain warming to 2.7°C, or about 2.0°C below the MAGICC BAU scenario. They both make assumptions about massive reductions in emissions post 2030 that are not in the INDCs. But at least the UNFCCC and CAT have graphs that show the projection through to 2100. Not so with BTW.

This is where the eminent brain surgeons and Nobel-Prize winning rocket scientists among the readership will need to concentrate to achieve the penetrating analytical powers of a lesser climate scientist.

From the text of BTW, the hypothetical business as usual (BAU) scenario for 2030 is 68 GtCO2e. The most optimistic scenario for emissions from the INDCs (and pessimistic for economic growth in the emerging economies) us that 2030 emissions will be 52 GtCO2e. The sophisticated climate projection models have whispered in code to the climate scientists that to be on target for the limit of 2.0°C, 2030 emissions show be not more than 36 GtCO2e. The mathematicians will be able to determine that 52 is exactly halfway between 36 and 68.

Now for the really difficult bit. I have just spent the last half hour in the shed manically cranking the handle of my patent beancounter extrapolator machine to get this result. By extrapolating this halfway result for the forecast period 2010-2030 through to 2100 my extrapolator tells me the INDCs are halfway to reaching the 2.0°C maximum warming target.

As Bob Ward will no doubt point out in his forthcoming rebuttal of Bjorn Lomborg’s paper, it is only true climate scientists who can reach such levels of analysis and understanding.

I accept no liability for any injuries caused, whether physical or psychological, by people foolishly trying to replicate this advanced result. Please leave this to the experts.

Fut there is a serious side to this policy advocacy. The Grantham Institute, along with others, is utterly misrepresenting the effectiveness of policy to virtually every government on the planet. Lomborg shows by rigorous means that policy is ineffective even if loads ridiculous assumptions are made, whether on climate science forecasting, policy theory, technological solutions, government priorities, or the ability of  current governments to make policy commitments for governments for decades ahead. My prediction is that the reaction of the Grantham Institute, along with plenty of others, is a thuggish denunciation of Lomborg. What they will not allow is the rational response to wide differences of interpretation. That is to compare and contrast the arguments and the assumptions made, both explicit and implicit. 

Kevin Marshall

WORLD RESOURCES INSTITUTE and Indonesian Emission Figures

In looking at the Indonesian INDC submission, I came across a confusing array of estimates for Indonesia’s total greenhouse gas emissions. These are the ones I found.

Estimates of Indonesia’s Total Greenhouse Emissions in MtCO2e





UNFCCC 1,101 1,444 2,829 1,908
EDGAR 1,165 622 1,171 745
WRI CAIT 2.0 1,026 1,372 1,584 1,928
WRI Blog   1,000 1,400 1,500
Indonesian Govt     1,800  

In graph format the figures are:-

The Indonesian INDC Submission says it will give unconditionally cut emissions by 29% from the BAU of 2881 MtCO2e, it means that in 2030 emissions will be about 100 MtCO2e lower than in 2005 not 1120 MtCO2e lower (UNFCCC) or 530 MtCO2e higher (EDGAR) . But on the basis of the UNFCCC or EGDAR figures by 2010 Indonesia had fallen by a third, so meeting the 2030 unconditional target should prove a doddle. Alternatively, use the World Resources Institute CAIT 2.0 data and Indonesia has unconditionally agreed something much more drastic. Between 2005 and 2010 emissions grow at 4% a year. On that trend, the 2030 BAU becomes 4200 MtCO2e, not 2881 MtCO2e, so the unconditional emissions “cut” is not 29% but 51%.

The worst example is contained in a graph about the Indonesian INDC Submission at the World Resources Institute Blog and reproduced below.

There are a number of things wrong with this graph, including

  • Scale is in KtCO2e, not MtCO2e.
  • Does not use WRI’s own CAIT 2.0. This is despite WRI claiming itprovides free access to comprehensive, reliable, and comparable greenhouse gas emissions data sets, as well as other climate-relevant indicators, to enable analysis on a wide range of climate-related data questions.
  • Nor does is there any trace of Indonesia’s claimed emissions 1800 Mt CO2e in 2005. So where does this wibbly-wobbly projection come from? The reference includes BAPPENAS 2015 – the Indonesian “National Development Planning Agency”. A search finds this graph.

The figure for 2005 is about 1400 MtCO2e, not the 1800 MtCO2e stated in the INDC. The Indonesian’s have fiddled their own unaudited figures to get a politically desired result – an easily achievable “reduction” in GHG emissions. Even worse, the WRI does check the data. There are minor points that the Indonesian “dalam ribu ton” translates on Google as “in thousand tons“, or that anyone who knows climate data would realize that 1,000,000 MtCO2e is greater than 49GtCO2e, the UNIPCCs AR5 global estimate of GHG emissions in 2010.

Finally, the Carbon Brief, in a recent article says that 1997 was a record for forest fires – a record that may be broken in 2015. Already 1600 MtCO2e has been emitted from forest fires. On this basis, therefore, 1997 total Indonesian emissions are likely to be well in excess of 2000 MtCO2e, and a considerable spike in the record.

The WRI CAIT 2.0 data, shows a minor spike. The narrower “GHG Emissions from Land-Use Change and Forestry” was estimated at 904 MtCO2e, as against 1321 MtCO2e in 2006. This is nowhere near the implied Carbon Brief 1997 emissions record. The figures

In summary, emissions figures for Indonesia are just arbitrary estimates, based on extremely limited and contradictory data. Both the WRI and the Indonesian Government cherry-pick data to suit their cause. Whether it is justified depends on the purpose. The WRI states their missions clearly.

That is to impose their environmentalist beliefs and perspectives on everybody else.

Indonesia’s INDC submission begins

This is, in my view, a far more rounded and focused mission. Against the environmentalist ideologies of the UNFCCC I believed that in manipulating figures Indonesia is serving the interests of 250 million Indonesians.

Kevin Marshall

Indonesia Outflanks the Climate Activists in its INDC Submission

I have spent a few weeks trying to make sense of the INDC submissions. One of the most impenetrable appeared to that from Indonesia. This view is shared by The Carbon Brief.

Uncertain emissions

As well as being hazy on policy and financing needs, it is also difficult to gauge the ambition of Indonesia’s INDC emissions targets. This is despite the document including a projected figure for BAU emissions in 2030 of 2.9bn tonnes of CO2 equivalent (GtCO2e).

The pledge to reduce emissions by at least 29% compared to this trajectory means an effective cap in 2030 of 2GtCO2e. With the more ambitious 41% reduction compared to BAU, the cap would be 1.7GtCO2e.


Similarly the World Resources Institute states

(T)he current draft contribution still displays several important gaps in transparency and ambition, which must be addressed before submitting a final INDC to the United Nations Framework Convention on Climate Change (UNFCCC). By eliminating these gaps, the Indonesian government could bring its contribution into line with international best practices on transparency, demonstrate leadership internationally by enhancing ambition, and help ensure success at COP 21.

The context from Indonesia’s perspective is stated in the opening paragraph of Indonesia’s INDC Submission.

In more basic language, Indonesia has more important and immediate priorities than “climate change“. From a national point of view, imposing drastic and ineffective policies will go against the Indonesian Government’s perceived duty to its people. This will happen regardless of the truth of the projected catastrophes that await the planet without global mitigation. The policies will be ineffective because most other emerging economies have similar priorities to Indonesia, and are taking similar measures of policy avoidance. In the case of Indonesia these are

  • Cherry-picking a base year.
  • Making reductions relative to a fictional “Business as Usual” scenario with inflated economic growth figures.
  • Making sure that even the most ambitious objectives achievable within the range of an objective forecast.
  • Focus the negotiations on achieving the conditional objectives subject to outside assistance. Any failure to reach agreement then becomes the fault of rich countries failing to provide the finance.
  • Allow some room to make last minute concessions not in the original submission, contingent on further unspecified outside assistance that is so vast the money will never be forthcoming.

The calculations to achieve the figures in the submissions are fairly simple to work out with a bit of patience.


Calculating the 2030 Business as Usual 2881 MtCO2e

The Indonesian INDC submission states that in 2005 total emissions were 1800 MtCO2e and combustion of fossil fuels were 19% of this total. That implies about 342 MtCO2e from the combustion of fossil fuels. The Carbon Dioxide Information Analysis Center (CDIAC1) has an estimated figure of 341.71 MtCO2e and the UNFCCC Country Brief in 2005 “CO2 emissions from fuel combustion” were 335.71 MtCO2e. For 20112 the CDIAC estimate is 472.53 MtCO2e, rounded to 473. Let us now assume a growth rate in emissions of 6.0% per annum from 2012 to 2030, against an economic growth rate of around 5.2% from 2000 to 2010 and 5.8% from 2005 to 20103. At 6.0% compound growth fossil fuel emissions in 20304 will be 1431 MtCO2e.

The non-fossil fuel emissions are a bit more problematic to work out. In 2005 the baseline estimate is 81% of 18005 is 1458. It is only a vague estimate, so round it down to 1450 and then assume it is constant for the Business as Usual (BAU) scenario.

The BAU 2030 total emissions forecast for Indonesia is therefore 1431 + 1450 = 2881 MtCO2e.

There might be other ways to derive this figure, but none are simpler and the figures do not fall out exactly.


How does Indonesia achieve the unconditional 29% reduction against BAU?

The easiest part to achieve is outside of fossil fuel emissions. The major cause of these emissions is in the reduction of the rainforests. The Carbon Brief is claims the biggest source of non-fossil fuel emissions is due to illegal forest clearances to grow palm oil. Although in 2015 the forest fires are closing in on the record set in 1997, it is safe to say that that these will reduce considerably in the coming years as Indonesia already has 52% of world palm oil production. By assuming a 3.34% reduction per annum in these emissions from 2005, they will reduce from 1450 MtCO2e to 611 MtCO2e in 2030. Total emissions of 2042 MtCO2e (1431+611) are 29.1% lower than BAU without an expense on the part of the Indonesian Government.


How does Indonesia achieve the conditional 41% reduction against BAU?

Indonesia claims that it needs international cooperation increase the reduction against BAU to 41%. In whole numbers, if BAU is 2881 a 41% reduction would make 1700. Not 1699 or 1701, but 1700. This is 100 less than the estimated 1800 MtCO2e total GHG emissions for 2005. This will be achieved without any “international cooperation“, a euphemism for foreign aid. The reason is simple. From the UNFCCC Indonesia Country Brief for Indonesia GDP growth for 1990 to 2012 average GDP growth per annum was 4.9% and CO2 emissions from fuel combustion was 5.1%. Normally GDP growth exceeds emissions growth. As a country develops this gap will widen until emissions growth ceases altogether and will even fall slightly. In India GDP growth from 1990 to 2012 averaged 6.5% and emissions growth was 5.7%. In China the respective figures are 10.3% and 6.1%. In China, emissions will peak around 2025 to 2030 without any policy change. It is reasonable to assume therefore that forecast fossil fuel emissions growth will be at a lower rate than the forecast GDP growth of 6.0%. A conservative estimate is that the fossil fuel emissions growth rate will be 25% lower than GDP growth rate from 2011 to 2030 at 4.50%. Rounding as before4 gives forecast emissions of 1089 MtCO2e as against a BAU of 1431.

The revised 2030 total emissions forecast for Indonesia is 1089 + 611 = 1700 MtCO2e. This is a 41.0% reduction on the BAU of 2881 MtCO2e.


Why should Indonesia have such a cynical manipulation of the numbers?

Indonesia is caught between a rock and a hard place. The stated major priorities for this country of 250 million people are at odds with doing its bit to save the world. In this Indonesia is not alone. India, China, and Vietnam are other major emerging nations who site other priorities. Ranged against them are the activist scientists behind the climate scare who hold the a priori truth of the prophesied global warming catastrophes that await the planet if we do not amend out wicked ways. Further, mitigation policies are good for the sole, regardless of their effectiveness, and the practice of these policies will lead others to enlightenment they have found. They will not recognize that any alternative points of view exist, whether morally, politically or scientifically. Rather than argue, the best policy is to outflank them. The activists will accept official policy objectives without question so long as it appears to fit the cause. So the Indonesians gave them massive cuts related to fictitious projected figures, cloaked with the language of climate speak to throw them off the scent. They should be applauded for protecting 250 million people, rather than inflicting ineffective burdens upon them. The real shame is that the leaders of the so-called developed economies have fallen for this rubbish.

Kevin Marshall


  1. Reference of the full global carbon budget 2014: C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. H. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Sailsbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng 2014. Global Carbon Budget 2014. Earth System Science Data Discussions, doi:10.5194/essdd-7-521-2014
  2. 2011 is the baseline year for the IPCC reports.
  3. This can be obtained from two sources. First the INDC submission notes that “GDP Growth Rate has slowed between 2010-2015 from 6.2-6.5% per annum to only 4.0% per annum (first quarter of 2015).” A return to the higher levels of growth is an assumption of successful government policy.
  4. Each year growth of 6.0% is rounded to the nearest whole number.
  5. The 2005 total emissions estimate of 1800 MtCO2 is at odds with other estimates. The WRI CAIT 2.0 figure is 1600; the EDGAR estimate is 1171; and the UNFCCC estimate is 2828. There might be another method of estimation. Maybe it is being a bit too cynical to assume that someone could have taken the average of the three (1866) and rounded down.

Ivanpah Solar Project Still Failing to Achieve Potential

Paul Homewood yesterday referred to a Marketwatch report titled “High-tech solar projects fail to deliver.” This was reposted at Tallbloke.

Marketwatch looks at the Ivanpah solar project. They comment

The $2.2 billion Ivanpah solar power project in California’s Mojave Desert is supposed to be generating more than a million megawatt-hours of electricity each year. But 15 months after starting up, the plant is producing just 40% of that, according to data from the U.S. Energy Department.

I looked at the Ivanpah solar project last fall, when the investors applied for a $539million federal grant to help pay off a $1.5 billion federal loan. One of the largest investors was Google, who at the end of 2013 had Cash, Cash Equivalents & Marketable Securities of $58,717million, $10,000million than the year before.

Technologically the Ivanpah plant seems impressive. It is worth taking a look at the website.

That might have been the problem. The original projections were for 1065,000 MWh annually from a 392 MW nameplate implying a planned output of 31% of capacity. When I look at the costings on Which? for solar panels on the roof of a house, they assume just under 10% of capacity. Another site, Wind and Sun UK, say

1 kWp of well sited PV array in the UK will produce 700-800 kWh of electricity per year.

That is around 8-9.5% of capacity. Even considering the technological superiority of the project and the climatic differences, three times is a bit steep, although 12.5% (40% of 31%) is very low. From Marketwatch some of the difference is can be explained by

  • Complex equipment constantly breaking down
  • Optimization of complex new technologies
  • Steam pipes leaking due to vibrations
  • Generating the initial steam takes longer than expected
  • It is cloudier than expected

However, even all of this cannot account for the output only being at 40% of expected. With the strong sun of the desert I would expect daily output to never exceed 40% of theoretical, as it is only daylight for 50% of the time, and just after sunrise and before sunset the sun is less strong than at midday. As well as the teething problems with complex technology, it appears that the engineers were over optimistic. A lack of due diligence in appraising the scheme – a factor common to many large scale Government backed initiatives – will have let the engineers have the finance for a fully scaled-up version of what should have been a small-scale project to prove the technology.


ATTP on Lomborg’s Australian Funding

Blogger …and then there’s physics (ATTP) joins in the hullabaloo about Bjorn Lomberg’s Lomborg’s Consensus Centre is getting A$4m of funding to set up a branch at the University of Western Australia. He says

However, ignoring that Lomborg appears to have a rather tenuous grasp on the basics of climate science, my main issue with what he says is its simplicity. Take all the problems in the world, determine some kind of priority ordering, and then start at the top and work your way down – climate change, obviously, being well down the list. It’s as if Lomborg doesn’t realise that the world is a complex place and that many of the problems we face are related. We can’t necessarily solve something if we don’t also try to address many of the other issues at the same time. It’s this kind of simplistic linear thinking – and that some seem to take it seriously – that irritates me most.

The comment about climatology is just a lead in. ATTP is expressing a normative view about the interrelationship of problems, along with beliefs about the solution. What he is rejecting as simplistic is the method of identifying the interrelated issues separately, understanding the relative size of the problems along with the effectiveness and availability of possible solutions and then prioritizing them.

This this errant notion is exacerbated when ATTP implies that Lomborg has received the funding. Lomborg heads up the Copenhagen Consensus Centre and it is they who have received the funding to set up a branch in Australia. This description is from their website

We work with some of the world’s top economists (including 7 Nobel Laureates) to research and publish the smartest solutions to global challenges. Through social, economic and environmental benefit-cost research, we show policymakers and philanthropists how to do the most good for each dollar spent.

It is about bringing together some of the best minds available to understand the problems of the world. It is then to persuade those who are able to do something about the issues. It is not Lomborg’s personal views that are present here, but people with different views and from different specialisms coming together to argue and debate. Anyone who has properly studied economics will soon learn that there are a whole range of different views, many of them plausible. Some glimpse that economic systems are highly interrelated in ways that cannot be remotely specified, leading to the conclusion that any attempt to create a computer model of an economic system will be a highly distorted simplification. At a more basic level they will have learnt that in the real world there are 200 separate countries, all with different priorities. In many there is a whole range of different voiced opinions about what the priorities should be at national, regional and local levels. To address all these interrelated issues together would require the modeller of be omniscient and omnipresent. To actually enact the modeller’s preferred policies over seven billion people would require a level of omnipotence that Stalin could only dream of.

This lack of understanding of economics and policy making is symptomatic of those who believe in climate science. They fail to realize that models are only an attempted abstraction of the real world. Academic economists have long recognized the abstract nature of the subject along with the presence of strong beliefs about the subject. As a result, in the last century many drew upon the rapidly developing philosophy of science to distinguish whether theories were imparting knowledge about the world or confirming beliefs. The most influential by some distance was Milton Friedman. In his seminal essay The Methodology of Positive Economics he suggested the way round this problem was to develop bold yet simple predictions from the theory that, despite being unlikely, are nevertheless come true. I would suggest that you do not need to be too dogmatic in the application. The bold predictions do not need to be right 100% of the time, but an entire research programme should be establishing a good track record over a sustained period. In climatology the bold predictions, that would show a large and increasing problem, have been almost uniformly wrong. For instance:-

  • The rate of melting of the polar ice caps has not accelerated.
  • The rate of sea level rise has not accelerated in the era of satellite measurements.
  • Arctic sea ice did not disappear in the summer of 2013.
  • Hurricanes did not get worse following Katrina. Instead there followed the quietest period on record.
  • Snow has not become a thing of the past in England, nor in Germany.

Other examples have been compiled by Pierre Gosselin at Notrickszone, as part of his list of climate scandals.

Maybe it is different in climatology. The standard response is that the reliability of the models is based on the strength of the consensus in support. This view is not proclaimed by ATTP. Instead from the name it would appear he believes the reliability can be obtained from the basic physics. I have not done any physics since high school and have forgotten most of what I learnt. So in discerning what is reality in that area I have to rely on the opinions of physicists themselves. One of the greatest physicists since Einstein was Richard Feynman. He said fifty years ago in a lecture on the Scientific Method

You cannot prove a vague theory wrong. If the guess that you make is poorly expressed and the method you have for computing the consequences is a little vague then ….. you see that the theory is good as it can’t be proved wrong. If the process of computing the consequences is indefinite, then with a little skill any experimental result can be made to look like an expected consequence.

Climate models, like economic models, will always be vague. This is not due to being poorly expressed (though they often are) but due to the nature of the subject. Short of rejecting climate models as utter nonsense, I would suggest the major way of evaluating whether they say something distinctive about the real world is on the predictive ability. But a consequence of theories always being vague in both economics and climate is you will not be able to use the models as a forecasting tool. As Freeman Dyson (who narrowly missed sharing a Nobel Prize with Feynman) recently said of climate models:-

These climate models are excellent tools for understanding climate, but that they are very bad tools for predicting climate. The reason is simple – that they are models which have very few of the factors that may be important, so you can vary one thing at a time ……. to see what happens – particularly carbon dioxide. But there are a whole lot of things that they leave out. ….. The real world is far more complicated than the models.

This implies that when ATTP is criticizing somebody else’s work with a simple model, or a third person’s work, he is likely criticizing them for looking at a highly complex issue in another way. Whether his way is better, worse or just different we have no way of knowing. All we can infer from his total rejection of ideas of experts in a field to which he lacks even a basic understanding, is that he has no basis of knowing either.

To be fair, I have not looked at the earlier part of ATTP’s article. For instance he says:-

If you want to read a defense of Lomborg, you could read Roger Pielke Jr’s. Roger’s article makes the perfectly reasonable suggestion that we shouldn’t demonise academics, but fails to acknowledge that Lomborg is not an academic by any standard definition…….

The place to look for a “standard definition” of a word is a dictionary. The noun definitions are


8. a student or teacher at a college or university.

9. a person who is academic in background, attitudes, methods, etc.:

He was by temperament an academic, concerned with books and the arts.

10. (initial capital letter) a person who supports or advocates the Platonic school of philosophy.

This is Bjorn Lomborg’s biography from the Copenhagen Consensus website:-

Dr. Bjorn Lomborg is Director of the Copenhagen Consensus Center and Adjunct Professor at University of Western Australia and Visiting Professor at Copenhagen Business School. He researches the smartest ways to help the world, for which he was named one of TIME magazine’s 100 most influential people in the world. His numerous books include The Skeptical Environmentalist, Cool It, How to Spend $75 Billion to Make the World a Better Place and The Nobel Laureates’ Guide to the Smartest Targets for the World 2016-2030.

Lomborg meets both definitions 8 & 9, which seem to be pretty standard. Like with John Cook and William Connolley defining the word sceptic, it would appear that ATTP rejects the authority of those who write the dictionary. Or more accurately does not even to bother to look. Like with rejecting the authority of those who understand economics it suggests ATTP uses the authority of his own dogmatic beliefs as the standard by which to evaluate others.

Kevin Marshall

DECC’s Dumb Global Calculator Model

On the 28th January 2015, the DECC launched a new policy emissions tool, so everyone can design policies to save the world from dangerous climate change. I thought I would try it out. By simply changing the parameters one-by-one, I found that the model is both massively over-sensitive to small changes in input parameters and is based on British data. From the model, it is possible to entirely eliminate CO2 emissions by 2100 by a combination of three things – reducing the percentage travel in urban areas by car from 43% to 29%; reducing the average size of homes to 95m2 from 110m2 today; and for everyone to go vegetarian.

The DECC website says

Cutting carbon emissions to limit global temperatures to a 2°C rise can be achieved while improving living standards, a new online tool shows.

The world can eat well, travel more, live in more comfortable homes, and meet international carbon reduction commitments according to the Global Calculator tool, a project led by the UK’s Department of Energy and Climate Change and co-funded by Climate-KIC.

Built in collaboration with a number of international organisations from US, China, India and Europe, the calculator is an interactive tool for businesses, NGOs and governments to consider the options for cutting carbon emissions and the trade-offs for energy and land use to 2050.

Energy and Climate Change Secretary Edward Davey said:

“For the first time this Global Calculator shows that everyone in the world can prosper while limiting global temperature rises to 2°C, preventing the most serious impacts of climate change.

“Yet the calculator is also very clear that we must act now to change how we use and generate energy and how we use our land if we are going to achieve this green growth.

“The UK is leading on climate change both at home and abroad. Britain’s global calculator can help the world’s crucial climate debate this year. Along with the many country-based 2050 calculators we pioneered, we are working hard to demonstrate to the global family that climate action benefits people.”

Upon entering the calculator I was presented with some default settings. Starting from a baseline emissions in 2011 of 49.9 GT/CO2e, this would give predicted emissions of 48.5 GT/CO2e in 2050 and 47.9 GT/CO2e in 2100 – virtually unchanged. Cumulative emissions to 2100 would be 5248 GT/CO2e, compared with 3010 GT/CO2e target to give a 50% chance of limiting warming to a 2°C rise. So the game is on to save the world.

I only dealt with the TRAVEL, HOMES and DIET sections on the left.

I went through each of the parameters, noting the results and then resetting back to the baseline.

The TRAVEL section seems to be based on British data, and concentrated on urban people. Extrapolating for the rest of the world seems a bit of a stretch, particularly when over 80% of the world is poorer. I was struck first by changing the mode of travel. If car usage in urban areas fell from 43% to 29%, global emissions from all sources in 2050 would be 13% lower. If car usage in urban areas increased from 43% to 65%, global emissions from all sources in 2050 would be 7% higher. The proportions are wrong (-14% gives -13%, but +22% gives +7%) along with urban travel being too high a proportion of global emissions.

The HOMES section has similar anomalies. Reducing the average home area by 2050 to 95m2 from 110m2 today reduces total global emissions in 2050 by 20%. Independently decreasing average urban house temperature in 2050 from 17oC in Winter & 27oC in Summer, instead of 20oC & 24oC reduces total global emissions in 2050 by 7%. Both seem to be based on British-based data, and highly implausible in a global context.

In the DIET section things get really silly. Cutting the average calorie consumption globally by 10% reduces total global emissions in 2050 by 7%. I never realised that saving the planet required some literal belt tightening. Then we move onto meat consumption. The baseline for 2050 is 220 Kcal per person per day, against the current European average of 281 Kcal. Reducing that to 14 Kcal reduces global emissions from all sources in 2050 by 73%. Alternatively, plugging in the “worst case” 281 Kcal, increases global emissions from all sources in 2050 by 71%. That is, if the world becomes as carnivorous in 2050 as the average European in 2011, global emissions from all sources at 82.7 GT/CO2e will be over six times higher the 13.0 GT/CO2e. For comparison, OECD and Chinese emissions from fossil fuels in 2013 were respectively 10.7 and 10.0 GT/CO2e. It seems it will be nut cutlets all round at the climate talks in Paris later this year. No need for China, India and Germany to scrap all their shiny new coal-fired power stations.

Below is the before and after of the increase in meat consumption.

Things get really interesting if I take the three most sensitive, yet independent, scenarios together. That is, reducing urban car use from 43% to 29% of journeys in 2050; reducing the average home area by 2050 to 95m2 from 110m2; and effectively making a sirloin steak (medium rare) and venison in redcurrant sauce things of the past. Adding them together gives global emissions of -2.8 GT/CO2e in 2050 and -7.1 GT/CO2e in 2100, with cumulative emissions to 2100 of 2111 GT/CO2e. The model does have some combination effect. It gives global emissions of 3.2 GT/CO2e in 2050 and -0.2 GT/CO2e in 2100, with cumulative emissions to 2100 of 2453 GT/CO2e. Below is the screenshot of the combined elements, along with a full table of my results.

It might be great to laugh at the DECC for not sense-checking the outputs of its glitzy bit of software. But it concerns me that it is more than likely the same people who are responsible for this nonsense are also responsible for the glossy plans to cut Britain’s emissions by 80% by 2050 without destroying hundreds of thousands of jobs; eviscerating the countryside; and reducing living standards, especially of the poor. Independent and critical review and audit of DECC output is long overdue.

Kevin Marshall


A spreadsheet model is also available, but I used the online tool, with its’ excellent graphics. The calculator is built by a number of organisations.

Why no country should sign up to Climate Mitigation at Paris 2015

The blog “the eco experts“, has produced a map of the countries most likely to survive climate change.

The most populous country with a high risk is India. In fact it has more people than the 50+ nations of Africa, or nearly twice the population of the OECD – the rich nations club. It is determined not to constrain the rapid growth in emissions if it means sacrificing the rapid economic growth that is pulling people out of poverty. Is this sensible when rapidly increasing its emissions create the prospect of dangerous climate change?

Look at the pattern of vulnerability.

Why is Mongolia more vulnerable than Russia or China?

Why is Haiti more vulnerable than Guatemala & El Salvador, which in turn are more vulnerable than Mexico, which in turn is more vulnerable than the USA?

Why are Syria and Iraq more vulnerable than Iran, which in turn is more vulnerable than Saudi Arabia, which is in turn more vulnerable than the UAE?

Why is Madagascar more vulnerable than Tanzania, which in turn is more vulnerable than South Africa, which is in turn more vulnerable than Botswana?

The answer does not lie in the local climate system but in the level of economic development. As with natural extreme weather events, any adverse consequences of climate change will impact on the poorest disproportionately.

In the light of this, should India

  1. Agree to sacrifice economic growth to constrain emissions, having a significant impact on global emissions and maybe encouraging others to do likewise?


  2. Continue with the high economic growth (and hence emission growth) strategy knowing that if catastrophic climate change is real the population will be better able to cope with it, and if inconsequential they will have sacrificed future generations to a trivial problem?


  3. Continue with the high economic growth (and hence emission growth) strategy and invest in more accurately identifying the nature and extent of climate change?

Now consider that any Government should be first and foremost responsible for the people of that country. If that can be best progressed by international agreements (such as in trade and keeping global peace) then it is the interests of that country to enter those agreements, and encourage other nations to do likewise. Global peace and globalisation are win-win strategies. But climate change is fundamentally different. It is a prospective future problem, the prospective harms from which are here clearly linked to stage of economic development. Combating the future problem means incurring costs, the biggest of which is economic growth. Technologically, there low-cost solutions are in place, and there is no example of any country aggressively weeding out ineffectual policies. Even if there were effective policies in in theory, for costs to exceed benefits would mean every major country either drastically cutting emissions (e.g. the OECD, China, Russia, Saudi Arabia, South Africa) or drastically constraining future emissions growth (India, Brazil, Indonesia, Vietnam, Thailand, plus dozens of other countries). If some countries fail to sign up then policy countries will be burdened with the certain actual costs of policy AND any residual possible costs of policy. Responsible countries will duck the issue, and, behind the scenes, help scupper the climate talks in Paris 2015.

Kevin Marshall

Veritasium Misinforms on Global Warming

Bishop Hill posts on a You-tube video “13 Misconceptions About Global Warming” from Veritasium (Dr Derek Muller), inviting readers to play a sort of bingo to “spot all the strawmen arguments, cherrypicking, out of date data, and plain old mistakes”. Here is my attempt, restricted to just 13 points.

  1. “Global warming” / “climate change” naming. It might be true that people can deny global warming by pointing to a localized cold weather snap. But it is also true that using the term “climate change” can result in any unusual weather event or short-term trend being blamed on anthropogenic global warming, along with natural global fluctuations. The term “global warming” reminds us that the adverse effects on climate are as a result of rising greenhouse gas levels warming the atmosphere. More importantly the use of the term “global” reminds us those changes in climate due to changes in greenhouse gases is a global issue requiring global solutions. Any mitigation policy that excludes 80% of the global population and two-thirds of global carbon emissions, will not work.


  2. Veritasium claims climate change is also about more extreme weather and ocean acidification, not just the average surface temperature is warming. But there is nothing in the greenhouse gas hypothesis that says a rise in temperatures will result in more extreme weather, nor does Veritasium provide the evidence of this happening. At Wattupwiththat there is a page that demonstrates weather is not getting more extreme from a number of different measures.


  3. Claim that it has not stopped warming as 13 of the 14 hottest years are in this century. This is a strawman, as there was significant warming in the last quarter of the twentieth century. We would only fail to have hottest years if global average temperatures had taken a sharp step decrease.


  4. Claims that taking the satellite data of global temperature anomalies into account shows that warming has not stopped. From Kevin Cowtan’s page (copied by Skeptical Science) we can calculate linear trends. It is the RSS satellite data that shows the longest period of no warming – 18 years from 1997-2014 based on the linear trend. It is just 13 years for GISTEMP and 14 years for HADCRUT4. The other satellite data is UAH, where there is just 6 years of no warming.



  5. What he is doing is comparing UAH satellite data that only shows the pause from 2009. There is now 35 years of satellite data, with the total recorded trend of 0.48oC. The RSS data shows 0.51oC of warming. The surface thermometer measures vary between 0.59 and 0.63 oC of warming. This is data cherry-picking.


  6. There is a claim that climate sensitivity is lower than thought in the 1980s. Not according to Nicholas Lewis, who found that the range of sensitivities is unchanged from the Charney Report 1979 through to AR5 WG1 of Sept-13


  7. Claims the central estimate for warming from a doubling of CO2 is 3.0oC of warming. Based on this from 2001 from HADCRUT4 shows no warming there would be 0.30oC of warming, when the trend from HADCRUT4 is zero. In a longer period from 1979 for which we have satellite data, an increase in CO2 from 336.8 to 398.5 ppm (Mauna Loa data) implies an increase in temperatures of 0.72oC – between 1.14 on 1.5 times greater than that measured by the temperature series. Even this is misleading, as there was no warming from 1944 to the late 1970s. In 1944 I estimate that CO2 levels were 308ppm, indicating a total warming in the last 70 years of 1.1oC, respectively 1.7 and 2.1 times greater than the trend in GISTEMP and HADCRUT4.


  8. This would appear to contradict this graph, which has no proper labelling showing have 3.0oC of doubling affects temperatures.

    Specifically from 1958 to 1980 CO2 rose from 315 to 339ppm, indicating warming of about 0.31 oC, but there was no warming in the IPCC projections. A rise in CO2 of 315 to 398.5 ppm from 1958 to 2014 would predict 1.0 oC in warming, almost double the actual data and the IPCC projections. Another point is with the “observed temperature”. It is not identified (probably GISTEMP) and ends on the high of 2010.


  9. Completely ignores the other greenhouse gases that contribute to warming, such as methane and halocarbons.


  10. Claims that sea level rise is another indication of global warming, through thermal expansion. This is not necessarily the case. The average temperature of the ocean is 3.9oC. A rise of to 4.0 oC will have zero expansion. If the rise in sea temperatures is confined to the Arctic or in the deep oceans where temperatures are below 4.0 oC, a rise in temperatures would mean a fall in sea levels. Below I have compiled a graph to show the expansion of a 100metre column of water by 0.1 oC from various starting temperatures.


  11. On Arctic Sea ice, is correct in saying that the 40% uptick in the last two years ignores the longer period of data. But in turn, Veritasium ignores evidence pre-satellites that were fluctuations in sea ice. Further, the uptick occurred at precisely the year when previous experts had predicted that summer sea ice cover would disappear. As a consequence, contraction of the sea ice is both less severe and less likely to be linked to human-caused warming than previously thought.


  12. Correctly points out that water vapour is the major greenhouse gas, but incorrectly claims to have evidence that water vapour is increasing in the atmosphere. The evidence is from a graphic from a 2007 PNAS paper.

    The evidence from 1900 is the average of 12 models. The confidence intervals are utter rubbish, appearing to be related to the magnitude of the average modelled anomaly. The actual (estimated) data in black does not have a confidence interval. It would appear that this estimated data has a step increase at roughly the time, or slightly before, when the warming stopped in the surface temperature records.


  13. Policy justification is totally wrong.

Veritasium says at 5.35

I’m not claiming it’s going to be some sort of crazy catastrophe, but we are going to get more intense storms, more droughts and floods, the oceans will become more acidic, sea levels will rise and my point is it would be better for all species on this planet and probably cheaper for us if we just started reducing emissions now than if we wait and pay the consequences later.

Every economic justification of policy projects “some sort of crazy catastrophe” that human being and other species will not be able to adapt to. Further they project that global emissions reductions will be both effective and relatively costless, which is contradicted by the evidence. But most of all, there is no political proposal in the climate talks that will reduce global emissions in the next twenty years. The proposals may only constrain the rate of increase.

Kevin Marshall


Get every new post delivered to your Inbox.

Join 51 other followers