John Cook undermining democracy through misinformation

It seems that John Cook was posting comments in 2011 under the pseudonym Lubos Motl. The year before physicist and blogger Luboš Motl had posted a rebuttal of Cook’s then 104 Global Warming & Climate Change Myths. When someone counters your beliefs point for point, then most people would naturally feel some anger. Taking the online identity of Motl is potentially more than identity theft. It can be viewed as an attempt to damage the reputation of someone you oppose.

However, there is a wider issue here. In 2011 John Cook co-authored with Stephan Lewandowsky The Debunking Handbook, that is still featured prominently on the skepticalscience.com. This short tract starts with the following paragraphs:-

It’s self-evident that democratic societies should base their decisions on accurate information. On many issues, however, misinformation can become entrenched in parts of the community, particularly when vested interests are involved. Reducing the influence of misinformation is a difficult and complex challenge.

A common misconception about myths is the notion that removing its influence is as simple as packing more information into people’s heads. This approach assumes that public misperceptions are due to a lack of knowledge and that the solution is more information – in science communication, it’s known as the “information deficit model”. But that model is wrong: people don’t process information as simply as a hard drive downloading data.

If Cook was indeed using the pseudonym Lubos Motl then he was knowingly putting out into the public arena misinformation in a malicious form. If he misrepresented Motl’s beliefs, then the public may not know who to trust. Targeted against one effective critic, it could trash their reputation. At a wider scale it could allow morally and scientifically inferior views to gain prominence over superior viewpoints. If the alarmist beliefs were superior it what be necessary to misrepresent alternative opinions. Open debate would soon reveal which side had the better views. But in debating and disputing, all sides would sharpen their arguments. What would quickly disappear is the reliance on opinion surveys and rewriting of dictionaries. Instead, proper academics would be distinguishing between quality, relevant evidence from dogmatic statements based on junk sociology and psychology. They would start defining the boundaries of expertise between the basic physics, computer modelling, results analysis, public policy-making, policy-implementation, economics, ethics and the philosophy of science. They may then start to draw on the understanding that has been achieved in these subject areas.

Kevin Marshall

Climatic Temperature Variations

In the previous post I identified that the standard definition of temperature homogenisation assumes that there are little or no variations in climatic trends within the homogenisation area. I also highlighted specific instances of where this assumption has failed. However, the examples may be just isolated and extreme instances, or there might be other, offsetting instances so the failures could cancel each other out without a systematic bias globally. Here I explore why this assumption should not be expected to hold anywhere, and how it may have biased the picture of recent warming. After a couple of proposals to test for this bias, I look at alternative scenarios that could bias the global average temperature anomalies. I concentrate on the land surface temperatures, though my comments may also have application to the sea surface temperature data sets.

 

Comparing Two Recent Warming Phases

An area that I am particularly interested in is the relative size of the early twentieth century warming compared to the more recent warming phase. This relative size, along with the explanations for those warming periods gives a route into determining how much of the recent warming was human caused. Dana Nuccitelli tried such an explanation at skepticalscience blog in 20111. Figure 1 shows the NASA Gistemp global anomaly in black along with a split be eight bands of latitude. Of note are the polar extremes, each covering 5% of the surface area. For the Arctic, the trough to peak of 1885-1940 is pretty much the same as the trough to peak from 1965 to present. But in the earlier period it is effectively cancelled out by the cooling in the Antarctic. This cooling, I found was likely caused by use of inappropriate proxy data from a single weather station3.

Figure 1. Gistemp global temperature anomalies by band of latitude2.

For the current issue, of particular note is the huge variation in trends by latitude from the global average derived from the homogenised land and sea surface data. Delving further, GISS provide some very useful maps of their homogenised and extrapolated data4. I compare two identical time lengths – 1944 against 1906-1940 and 2014 against 1976-2010. The selection criteria for the maps are in figure 2.

Figure 2. Selection criteria for the Gistemp maps.

Figure 3. Gistemp map representing the early twentieth surface warming phase for land data only.


Figure 4. Gistemp map representing the recent surface warming phase for land data only.

The later warming phase is almost twice the magnitude of, and has much the better coverage than, the earlier warming. That is 0.43oC against 0.24oC. In both cases the range of warming in the 250km grid cells is between -2oC and +4oC, but the variations are not the same. For instance, the most extreme warming in both periods is at the higher latitudes. But, with the respect to North America in the earlier period the most extreme warming is over the Northwest Territories of Canada, whilst in the later period the most extreme warming is over Western Alaska, with the Northwest Territories showing near average warming. In the United States, in the earlier period there is cooling over Western USA, whilst in the later period there is cooling over much of Central USA, and strong warming in California. In the USA, the coverage of temperature stations is quite good, at least compared with much of the Southern Hemisphere. Euan Mearns has looked at a number of areas in the Southern Hemisphere4, which he summarised on the map in Figure 5

Figure 5. Euan Mearns says of the above “S Hemisphere map showing the distribution of areas sampled. These have in general been chosen to avoid large centres of human population and prosperity.

For the current analysis Figure 6 is most relevant.

Figure 6. Euan Mearns’ says of the above “The distribution of operational stations from the group of 174 selected stations.

The temperature data for the earlier period is much sparser than for later period. Even where there is data available in the earlier period the temperature data could be based on a fifth of the number of temperature stations as the later period. This may exaggerate slightly the issue, as the coasts of South America and Eastern Australia are avoided.

An Hypothesis on the Homogenisation Impact

Now consider again the description of homogenisation Venema et al 20125, quoted in the previous post.

 

The most commonly used method to detect and remove the effects of artificial changes is the relative homogenization approach, which assumes that nearby stations are exposed to almost the same climate signal and that thus the differences between nearby stations can be utilized to detect inhomogeneities. In relative homogeneity testing, a candidate time series is compared to multiple surrounding stations either in a pairwise fashion or to a single composite reference time series computed for multiple nearby stations. (Italics mine)

 

The assumption of the same climate signal over the homogenisation will not apply where the temperature stations are thin on the ground. The degree to which homogenisation eliminates real world variations in trend could be, to some extent, inversely related to the density. Given that the density of temperature data points diminishes in most areas of the world rapidly when one goes back in time beyond 1960, homogenisation in the early warming period far more likely to be between climatically different temperature stations than in the later period. My hypothesis is that, relatively, homogenisation will reduce the early twentieth century warming phase compared the recent warming phase as in earlier period homogenisation will be over much larger areas with larger real climate variations within the homogenisation area.

Testing the Hypothesis

There are at least two ways that my hypothesis can be evaluated. Direct testing of information deficits is not possible.

First is to conduct temperature homogenisations on similar levels of actual data for the entire twentieth century. If done for a region, the actual data used in global temperature anomalies should be run for a region as well. This should show that the recent warming phase is post homogenisation is reduced with less data.

Second is to examine the relate size of adjustments to the availability of comparative data. This can be done in various ways. For instance, I quite like the examination of the Manaus Grid block record Roger Andrews did in a post The Worst of BEST6.

Counter Hypotheses

There are two counter hypotheses on temperature bias. These may undermine my own hypothesis.

First is the urbanisation bias. Euan Mearns in looking at temperature data of the Southern Hemisphere tried to avoid centres of population due to the data being biased. It is easy to surmise the lack of warming Mearns found in central Australia7 was lack of an urbanisation bias from the large cities on the coast. However, the GISS maps do not support this. Ronan and Michael Connolly8 of Global Warming Solved claim that the urbanisation bias in the global temperature data is roughly equivalent to the entire warming of the recent epoch. I am not sure that the urbanisation bias is so large, but even if it were, it could be complementary to my hypothesis based on trends.

Second is that homogenisation adjustments could be greater the more distant in past that they occur. It has been noted (Steve Goddard in particular) that each new set of GISS adjustments adjusts past data. The same data set used to test my hypothesis above could also be utilized to test this hypothesis, by conducting homogenisations runs on the data to date, then only to 2000, then to 1990 etc. It could be that the earlier warming trend is somehow suppressed by homogenizing the most recent data, then working backwards through a number of iterations, each one using the results of the previous pass. The impact on trends that operate over different time periods, but converge over longer periods, could magnify the divergence and thus cause differences in trends decades in the past to be magnified. As such differences in trend appear to the algorithm to be more anomalous than in reality they actually are.

Kevin Marshall

Notes

  1. Dana Nuccitelli – What caused early 20th Century warming? 24.03.2011
  2. Source http://data.giss.nasa.gov/gistemp/graphs_v3/
  3. See my post Base Orcadas as a Proxy for early Twentieth Century Antarctic Temperature Trends 24.05.2015
  4. Euan Mearns – The Hunt For Global Warming: Southern Hemisphere Summary 14.03.2015. Area studies are referenced on this post.
  5. Venema et al 2012 – Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., Stepanek, P., Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti, M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P., and Brandsma, T.: Benchmarking homogenization algorithms for monthly data, Clim. Past, 8, 89-115, doi:10.5194/cp-8-89-2012, 2012.
  6. Roger Andrews – The Worst of BEST 23.03.2015
  7. Euan Mearns – Temperature Adjustments in Australia 22.02.2015
  8. Ronan and Michael Connolly – Summary: “Urbanization bias” – Papers 1-3 05.12.2013


Defining “Temperature Homogenisation”

Summary

The standard definition of temperature homogenisation is of a process that cleanses the temperature data of measurement biases to only leave only variations caused by real climatic or weather variations. This is at odds with GHCN & GISS adjustments which delete some data and add in other data as part of the homogenisation process. A more general definition is to make the data more homogenous, for the purposes of creating regional and global average temperatures. This is only compatible with the standard definition if assume that there are no real data trends existing within the homogenisation area. From various studies it is clear that there are cases where this assumption does not hold good. The likely impacts include:-

  • Homogenised data for a particular temperature station will not be the cleansed data for that location. Instead it becomes a grid reference point, encompassing data from the surrounding area.
  • Different densities of temperature data may lead to different degrees to which homogenisation results in smoothing of real climatic fluctuations.

Whether or not this failure of understanding is limited to a number of isolated instances with a near zero impact on global temperature anomalies is an empirical matter that will be the subject of my next post.

 

Introduction

A common feature of many concepts involved with climatology, the associated policies and sociological analyses of non-believers, is a failure to clearly understand of the terms used. In the past few months it has become evident to me that this failure of understanding extends to term temperature homogenisation. In this post I look at the ambiguity of the standard definition against the actual practice of homogenising temperature data.

 

The Ambiguity of the Homogenisation Definition

The World Meteorological Organisation in its’ 2004 Guidelines on Climate Metadata and Homogenization1 wrote this explanation.

Climate data can provide a great deal of information about the atmospheric environment that impacts almost all aspects of human endeavour. For example, these data have been used to determine where to build homes by calculating the return periods of large floods, whether the length of the frost-free growing season in a region is increasing or decreasing, and the potential variability in demand for heating fuels. However, for these and other long-term climate analyses –particularly climate change analyses– to be accurate, the climate data used must be as homogeneous as possible. A homogeneous climate time series is defined as one where variations are caused only by variations in climate.

Unfortunately, most long-term climatological time series have been affected by a number of nonclimatic factors that make these data unrepresentative of the actual climate variation occurring over time. These factors include changes in: instruments, observing practices, station locations, formulae used to calculate means, and station environment. Some changes cause sharp discontinuities while other changes, particularly change in the environment around the station, can cause gradual biases in the data. All of these inhomogeneities can bias a time series and lead to misinterpretations of the studied climate. It is important, therefore, to remove the inhomogeneities or at least determine the possible error they may cause.

 

That is temperature homogenisation is necessary to isolate and remove what Steven Mosher has termed measurement biases2, from the real climate signal. But how does this isolation occur?

Venema et al 20123 states the issue more succinctly.

 

The most commonly used method to detect and remove the effects of artificial changes is the relative homogenization approach, which assumes that nearby stations are exposed to almost the same climate signal and that thus the differences between nearby stations can be utilized to detect inhomogeneities (Conrad and Pollak, 1950). In relative homogeneity testing, a candidate time series is compared to multiple surrounding stations either in a pairwise fashion or to a single composite reference time series computed for multiple nearby stations. (Italics mine)

 

Blogger …and Then There’s Physics (ATTP) partly recognizes these issues may exist in his stab at explaining temperature homogenisation4.

So, it all sounds easy. The problem is, we didn’t do this and – since we don’t have a time machine – we can’t go back and do it again properly. What we have is data from different countries and regions, of different qualities, covering different time periods, and with different amounts of accompanying information. It’s all we have, and we can’t do anything about this. What one has to do is look at the data for each site and see if there’s anything that doesn’t look right. We don’t expect the typical/average temperature at a given location at a given time of day to suddenly change. There’s no climatic reason why this should happen. Therefore, we’d expect the temperature data for a particular site to be continuous. If there is some discontinuity, you need to consider what to do. Ideally you look through the records to see if something happened. Maybe the sensor was moved. Maybe it was changed. Maybe the time of observation changed. If so, you can be confident that this explains the discontinuity, and so you adjust the data to make it continuous.

What if there isn’t a full record, or you can’t find any reason why the data may have been influenced by something non-climatic? Do you just leave it as is? Well, no, that would be silly. We don’t know of any climatic influence that can suddenly cause typical temperatures at a given location to suddenly increase or decrease. It’s much more likely that something non-climatic has influenced the data and, hence, the sensible thing to do is to adjust it to make the data continuous. (Italics mine)

The assumption of a nearby temperature stations have the same (or very similar) climatic signal, if true would mean that homogenisation would cleanse the data of the impurities of measurement biases. But there is only a cursory glance given to the data. For instance, when Kevin Cowtan gave an explanation of the fall in average temperatures at Puerto Casado neither he, nor anyone else, checked to see if the explanation stacked up beyond checking to see if there had been a documented station move at roughly that time. Yet the station move is at the end of the drop in temperatures, and a few minutes checking would have confirmed that other nearby stations exhibit very similar temperature falls5. If you have a preconceived view of how the data should be, then a superficial explanation that conforms to that preconception will be sufficient. If you accept the authority of experts over personally checking for yourself, then the claim by experts that there is not a problem is sufficient. Those with no experience of checking the outputs following processing of complex data will not appreciate the issues involved.

 

However, this definition of homogenisation appears to be different from that used by GHCN and NASA GISS. When Euan Mearns looked at temperature adjustments in the Southern Hemisphere and in the Arctic6, he found numerous examples in the GHCN and GISS homogenisations of infilling of some missing data and, to a greater extent, deleted huge chunks of temperature data. For example this graphic is Mearns’ spreadsheet of adjustments between GHCNv2 (raw data + adjustments) and the GHCNv3 (homogenised data) for 25 stations in Southern South America. The yellow cells are where V2 data exist V3 not; the greens cells V3 data exist where V2 data do not.

 

 

Definition of temperature homogenisation

A more general definition that encompasses the GHCN / GISS adjustments is of broadly making the
data homogenous. It is not done by simply blending the data together and smoothing out the data. Homogenisation also adjusts anomalous data as a result of pairwise comparisons between local temperature stations, or in the case of extreme differences in the GHCN / GISS deletes the most anomalous data. This is a much looser and broader process than homogenisation of milk, or putting some food through a blender.

The definition I cover in more depth in the appendix.

 

 

The Consequences of Making Data Homogeneous

A consequence of cleansing the data in order to make it more homogenous gives a distinction that is missed by many. This is due to making the strong assumption that there are no climatic differences between the temperature stations in the homogenisation area.

Homogenisation is aimed at adjusting for the measurement biases to give a climatic reading for the location where the temperature station is located that is a closer approximation to what that reading would be without those biases. With the strong assumption, making the data homogenous is identical to removing the non-climatic inhomogeneities. Cleansed of these measurement biases the temperature data is then both the average temperature readings that would have been generated if the temperature station had been free of biases and a representative location for the area. This latter aspect is necessary to build up a global temperature anomaly, which is constructed through dividing the surface into a grid. Homogenisation, in the sense of making the data more homogenous by blending is an inappropriate term. All what is happening is adjusting for anomalies within the through comparisons with local temperature stations (the GHCN / GISS method) or comparisons with an expected regional average (the Berkeley Earth method).

 

But if the strong assumption does not hold, homogenisation will adjust these climate differences, and will to some extent fail to eliminate the measurement biases. Homogenisation is in fact made more necessary if movements in average temperatures are not the same and the spread of temperature data is spatially uneven. Then homogenisation needs to not only remove the anomalous data, but also make specific locations more representative of the surrounding area. This enables any imposed grid structure to create an estimated average for that area through averaging the homogenized temperature data sets within the grid area. As a consequence, the homogenised data for a temperature station will cease to be a closer approximation to what the thermometers would have read free of any measurement biases. As homogenisation is calculated by comparisons of temperature stations beyond those immediately adjacent, there will be, to some extent, influences of climatic changes beyond the local temperature stations. The consequences of climatic differences within the homogenisation area include the following.

 

  • The homogenised temperature data for a location could appear largely unrelated to the original data or to the data adjusted for known biases. This could explain the homogenised Reykjavik temperature, where Trausti Jonsson of the Icelandic Met Office, who had been working with the data for decades, could not understand the GHCN/GISS adjustments7.
  • The greater the density of temperature stations in relation to the climatic variations, the less that climatic variations will impact on the homogenisations, and the greater will be the removal of actual measurement biases. Climate variations are unlikely to be much of an issue with the Western European and United States data. But on the vast majority of the earth’s surface, whether land or sea, coverage is much sparser.
  • If the climatic variation at a location is of different magnitude to that of other locations in the homogenisation area, but over the same time periods and direction, then the data trends will be largely retained. For instance, in Svarlbard the warming temperature trends of the early twentieth century and from the late 1970s were much greater than elsewhere, so were adjusted downwards8.
  • If there are differences in the rate of temperature change, or the time periods for similar changes, then any “anomalous” data due to climatic differences at the location will be eliminated or severely adjusted, on the same basis as “anomalous” data due to measurement biases. For instance in large part of Paraguay at the end of the 1960s average temperatures by around 1oC. Due to this phenomena not occurring in the surrounding areas both the GHCN and Berkeley Earth homogenisation processes adjusted out this trend. As a consequence of this adjustment, a mid-twentieth century cooling in the area was effectively adjusted to out of the data9.
  • If a large proportion of temperature stations in a particular area have consistent measurement biases, then homogenisation will retain those biases, as it will not appear anomalous within the data. For instance, much of the extreme warming post 1950 in South Korea is likely to have been as a result of urbanization10.

 

Other Comments

Homogenisation is just part of the process of adjusting data for the twin purposes of attempting to correct for biases and building a regional and global temperature anomalies. It cannot, for instance, correct for time of observation biases (TOBS). This needs to be done prior to homogenisation. Neither will homogenisation build a global temperature anomaly. Extrapolating from the limited data coverage is a further process, whether for fixed temperature stations on land or the ship measurements used to calculate the ocean surface temperature anomalies. This extrapolation has further difficulties. For instance, in a previous post11 I covered a potential issue with the Gistemp proxy data for Antarctica prior to permanent bases being established on the continent in the 1950s. Making the data homogenous is but the middle part of a wider process.

Homogenisation is a complex process. The Venema et al 20123 paper on the benchmarking of homogenisation algorithms demonstrates that different algorithms produce significantly different results. What is clear from the original posts on the subject by Paul Homewood and the more detailed studies by Euan Mearns and Roger Andrews at Energy Matters, is that the whole process of going from the raw monthly temperature readings to the final global land surface average trends has thrown up some peculiarities. In order to determine whether they are isolated instances that have near zero impact on the overall picture, or point to more systematic biases that result from the points made above, it is necessary to understand the data available in relation to the overall global picture. That will be the subject of my next post.

 

Kevin Marshall

 

Notes

  1. GUIDELINES ON CLIMATE METADATA AND HOMOGENIZATION by Enric Aguilar, Inge Auer, Manola Brunet, Thomas C. Peterson and Jon Wieringa
  2. Steven Mosher – Guest post : Skeptics demand adjustments 09.02.2015
  3. Venema et al 2012 – Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., Stepanek, P., Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti, M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P., and Brandsma, T.: Benchmarking homogenization algorithms for monthly data, Clim. Past, 8, 89-115, doi:10.5194/cp-8-89-2012, 2012.
  4. …and Then There’s Physics – Temperature homogenisation 01.02.2015
  5. See my post Temperature Homogenization at Puerto Casado 03.05.2015
  6. For example

    The Hunt For Global Warming: Southern Hemisphere Summary

    Record Arctic Warmth – in 1937

  7. See my post Reykjavik Temperature Adjustments – a comparison 23.02.2015
  8. See my post RealClimate’s Mis-directions on Arctic Temperatures 03.03.2015
  9. See my post Is there a Homogenisation Bias in Paraguay’s Temperature Data? 02.08.2015
  10. NOT A LOT OF PEOPLE KNOW THAT (Paul Homewood) – UHI In South Korea Ignored By GISS 14.02.2015
  11.  

 

 

Appendix – Definition of Temperature Homogenisation

When discussing temperature homogenisations, nobody asks what the term actual means. In my house we consume homogenised milk. This is the same as the pasteurized milk I drank as a child except for one aspect. As a child I used to compete with my siblings to be the first to open a new pint bottle, as it had the cream on top. The milk now does not have this cream, as it is blended in, or homogenized, with the rest of the milk. Temperature homogenizations are different, involving changes to figures, along with (at least with the GHCN/GISS data) filling the gaps in some places and removing data in others1.

But rather than note the differences, it is better to consult an authoritative source. From Dictionary.com, the definitions of homogenize are:-

verb (used with object), homogenized, homogenizing.

  1. to form by blending unlike elements; make homogeneous.
  2. to prepare an emulsion, as by reducing the size of the fat globules in (milk or cream) in order to distribute them equally throughout.
  3. to make uniform or similar, as in composition or function:

    to homogenize school systems.

  4. Metallurgy. to subject (metal) to high temperature to ensure uniform diffusion of components.

Applying the dictionary definitions, data homogenization in science is not about blending various elements together, nor about additions or subtractions from the data set, or adjusting the data. This is particularly true in chemistry.

For UHCN and NASA GISS temperature data homogenization involves removing or adjusting elements in the data that are markedly dissimilar from the rest. It can also mean infilling data that was never measured. The verb homogenize does not fit the processes at work here. This has led to some, like Paul Homewood, to refer to the process as data tampering or worse. A better idea is to look further at the dictionary.

Again from Dictionary.com, the first two definitions of the adjective homogeneous are:-

  1. composed of parts or elements that are all of the same kind; not heterogeneous:

a homogeneous population.

  1. of the same kind or nature; essentially alike.

I would suggest that temperature homogenization is a loose term for describing the process of making the data more homogeneous. That is for smoothing out the data in some way. A false analogy is when I make a vegetable soup. After cooking I end up with a stock containing lumps of potato, carrot, leeks etc. I put it through the blender to get an even constituency. I end up with the same weight of soup before and after. A similar process of getting the same after homogenization as before is clearly not what is happening to temperatures. The aim of making the data homogenous is both to remove anomalous data and blend the data together.

 

 

Ivanpah Solar Project Still Failing to Achieve Potential

Paul Homewood yesterday referred to a Marketwatch report titled “High-tech solar projects fail to deliver.” This was reposted at Tallbloke.

Marketwatch looks at the Ivanpah solar project. They comment

The $2.2 billion Ivanpah solar power project in California’s Mojave Desert is supposed to be generating more than a million megawatt-hours of electricity each year. But 15 months after starting up, the plant is producing just 40% of that, according to data from the U.S. Energy Department.

I looked at the Ivanpah solar project last fall, when the investors applied for a $539million federal grant to help pay off a $1.5 billion federal loan. One of the largest investors was Google, who at the end of 2013 had Cash, Cash Equivalents & Marketable Securities of $58,717million, $10,000million than the year before.

Technologically the Ivanpah plant seems impressive. It is worth taking a look at the website.

That might have been the problem. The original projections were for 1065,000 MWh annually from a 392 MW nameplate implying a planned output of 31% of capacity. When I look at the costings on Which? for solar panels on the roof of a house, they assume just under 10% of capacity. Another site, Wind and Sun UK, say

1 kWp of well sited PV array in the UK will produce 700-800 kWh of electricity per year.

That is around 8-9.5% of capacity. Even considering the technological superiority of the project and the climatic differences, three times is a bit steep, although 12.5% (40% of 31%) is very low. From Marketwatch some of the difference is can be explained by

  • Complex equipment constantly breaking down
  • Optimization of complex new technologies
  • Steam pipes leaking due to vibrations
  • Generating the initial steam takes longer than expected
  • It is cloudier than expected

However, even all of this cannot account for the output only being at 40% of expected. With the strong sun of the desert I would expect daily output to never exceed 40% of theoretical, as it is only daylight for 50% of the time, and just after sunrise and before sunset the sun is less strong than at midday. As well as the teething problems with complex technology, it appears that the engineers were over optimistic. A lack of due diligence in appraising the scheme – a factor common to many large scale Government backed initiatives – will have let the engineers have the finance for a fully scaled-up version of what should have been a small-scale project to prove the technology.

 

Base Orcadas as a Proxy for early Twentieth Century Antarctic Temperature Trends

Temperature trends vary greatly across different parts of the globe, an aspect that is not recognized when homogenizing temperatures. At a top level NASA GISS usefully split their global temperature anomaly into eight bands of latitude. I have graphed the five year moving averages for each band, along with the Gistemp global anomaly in Figure 1.

Figure 1. Gistemp global temperature anomalies by band of latitude.

The biggest oddity is the 64S-90S band. This bottom slice of the globe roughly equates to Antarctica, which is South of 66°34′S. Not only was there massive cooling until 1930 – in contradiction to the global trend – but prior to the 1970 was very large volatility in temperatures, despite my using five year moving averages. Looking at the GHCN database of weather stations, there none listed in Antarctica until Rothera point started collecting data in 1946, as shown in Figure 21.

Figure 2. A selection of temperature anomalies in the Antarctica. The most numerous are either on the Antarctic Pennisula, or the islands just to the North.

The only long record is at Base Orcadas located at (60.8 S 44.7 W). I have graphed the GISS homogenised temperature anomaly data for station 701889680000 with the Gistemp 64S-90S band in Figure 3.

Figure 3. Gistemp 64S-90S annual temperature anomaly compared to Base Orcadas GISS homogenised data.

There is a remarkable similarity in the data sets until 1950, after which they appear unrelated. This suggests that in the absence of other data, Base Orcadas was the principle element in creating a proxy for the missing Antarctic data, despite it being located outside the area, and not being related to the actual data for well over half a century. The outcome is to bias the overall global temperature anomaly by suppressing the early twentieth century warming, making the late twentieth century warming appear relatively greater than is the underlying reality2. The error is due to assuming that temperature trends are the same at different latitudes are the same, an assumption that the homogenised data shows to be false.

Kevin Marshall

 

Notes

  1. Also in Antarctica (but not listed) there has been data collected at Amundsen-Scot base at the South Pole (90.0 S 0.0 E) since 1957, and at Vostok base (78.5 S 106.9 E) since 1958.
  2. Removing the Antarctic data would increase both the early twentieth century and post 1975 warming periods. But, given that 64S-90S is 5% of the global surface area, I estimate it would increase the earlier warming trends by 5-10% as against 1-3% for the later trend.


Temperature Homogenization at Puerto Casado

Summary

The temperature homogenizations for the Paraguay data within both the BEST and UHCN/Gistemp surface temperature data sets points to a potential flaw within the temperature homogenization process. It removes real, but localized, temperature variations, creating incorrect temperature trends. In the case of Paraguay from 1955 to 1980, a cooling trend is turned into a warming trend. Whether this biases the overall temperature anomalies, or our understanding of climate variation, remains to be explored.

 

A small place in Mid-Paraguay, on the Brazil/Paraguay border has become the centre of focus of the argument on temperature homogenizations.

For instance here is Dr Kevin Cowtan, of the Department of Chemistry at the University of York, explaining the BEST adjustments at Puerto Casado.

Cowtan explains at 6.40

In a previous video we looked at a station in Paraguay, Puerto Casado. Here is the Berkeley Earth data for that station. Again the difference between the station record and the regional average shows very clear jumps. In this case there are documented station moves corresponding to the two jumps. There may be another small change here that wasn’t picked up. The picture for this station is actually fairly clear.

The first of these “jumps” was a fall in the late 1960s of about 1oC. Figure 1 expands the section of the Berkeley Earth graph from the video, to emphasise this change.

Figure 1 – Berkeley Earth Temperature Anomaly graph for Puerto Casado, with expanded section showing the fall in temperature and against the estimated mean station bias.

The station move is after the fall in temperature.

Shub Niggareth looked at the metadata on the actual station move concluding

IT MOVED BECAUSE THERE IS CHANGE AND THERE IS A CHANGE BECAUSE IT MOVED

That is the evidence of the station move was vague. The major evidence was the fall in temperatures. Alternative evidence is that there were a number of other stations in the area exhibiting similar patterns.

But maybe there was some, unknown, measurement bias (to use Steven Mosher’s term) that would make this data stand out from the rest? I have previously looked eight temperature stations in Paraguay with respect to the NASA Gistemp and UHCN adjustments. The BEST adjustments for the stations, along another in Paul Homewood’s original post, are summarized in Figure 2 for the late 1960s and early 1970s. All eight have similar downward adjustment that I estimate as being between 0.8 to 1.2oC. The first six have a single adjustment. Asuncion Airport and San Juan Bautista have multiple adjustments in the period. Pedro Juan CA was of very poor data quality due to many gaps (see GHCNv2 graph of the raw data) hence the reason for exclusion.

GHCN Name

GHCN Location

BEST Ref

Break Type

Break Year

 

Concepcion

23.4 S,57.3 W

157453

Empirical

1969

 

Encarcion

27.3 S,55.8 W

157439

Empirical

1968

 

Mariscal

22.0 S,60.6 W

157456

Empirical

1970

 

Pilar

26.9 S,58.3 W

157441

Empirical

1967

 

Puerto Casado

22.3 S,57.9 W

157455

Station Move

1971

 

San Juan Baut

26.7 S,57.1 W

157442

Empirical

1970

 

Asuncion Aero

25.3 S,57.6 W

157448

Empirical

1969

 

  

  

  

Station Move

1972

 

  

  

  

Station Move

1973

 

San Juan Bautista

25.8 S,56.3 W

157444

Empirical

1965

 

  

  

  

Empirical

1967

 

  

  

  

Station Move

1971

 

Pedro Juan CA

22.6 S,55.6 W

19469

Empirical

1968

 

  

  

  

Empirical

3 in 1970s

 
           

Figure 2 – Temperature stations used in previous post on Paraguayan Temperature Homogenisations

 

Why would both BEST and UHCN remove a consistent pattern covering and area of around 200,000 km2? The first reason, as Roger Andrews has found, the temperature fall was confined to Paraguay. The second reason is suggested by the UHCNv2 raw data1 shown in figure 3.

Figure 3 – UHCNv2 “raw data” mean annual temperature anomalies for eight Paraguayan temperature stations, with mean of 1970-1979=0.

There was an average temperature fall across these eight temperature stations of about half a degree from 1967 to 1970, and over one degree by the mid-1970s. But it was not at the same time. The consistency is only show by the periods before and after as the data sets do not diverge. Any homogenisation program would see that for each year or month for every data set, the readings were out of line with all the other data sets. Now maybe it was simply data noise, or maybe there is some unknown change, but it is clearly present in the data. But temperature homogenisation should just smooth this out. Instead it cools the past. Figure 4 shows the impact average change resulting from the UHCN and NASA GISS homogenisations.

Figure 4 – UHCNv2 “raw data” and NASA GISS Homogenized average temperature anomalies, with the net adjustment.

A cooling trend for the period 1955-1980 has been turned into a warming trend due to the flaw in homogenization procedures.

The Paraguayan data on its own does not impact on the global land surface temperature as it is a tiny area. Further it might be an isolated incident or offset by incidences of understating the warming trend. But what if there are smaller micro climates that are only picked up by one or two temperature stations? Consider figure 5 which looks at the BEST adjustments for Encarnacion, one of the eight Paraguayan stations.

Figure 5 – BEST adjustment for Encarnacion.

There is the empirical break in 1968 from the table above, but also empirical breaks in the 1981 and 1991 that look to be exactly opposite. What Berkeley earth call the “estimated station mean bias” is as a result of actual deviations in the real data. Homogenisation eliminates much of the richness and diversity in the real world data. The question is whether this happens consistently. First we need to understand the term “temperature homogenization“.

Kevin Marshall

Notes

  1. The UHCNv2 “raw” data is more accurately pre-homogenized data. That is the raw data with some adjustments.

ATTP on Lomborg’s Australian Funding

Blogger …and then there’s physics (ATTP) joins in the hullabaloo about Bjorn Lomberg’s Lomborg’s Consensus Centre is getting A$4m of funding to set up a branch at the University of Western Australia. He says

However, ignoring that Lomborg appears to have a rather tenuous grasp on the basics of climate science, my main issue with what he says is its simplicity. Take all the problems in the world, determine some kind of priority ordering, and then start at the top and work your way down – climate change, obviously, being well down the list. It’s as if Lomborg doesn’t realise that the world is a complex place and that many of the problems we face are related. We can’t necessarily solve something if we don’t also try to address many of the other issues at the same time. It’s this kind of simplistic linear thinking – and that some seem to take it seriously – that irritates me most.

The comment about climatology is just a lead in. ATTP is expressing a normative view about the interrelationship of problems, along with beliefs about the solution. What he is rejecting as simplistic is the method of identifying the interrelated issues separately, understanding the relative size of the problems along with the effectiveness and availability of possible solutions and then prioritizing them.

This this errant notion is exacerbated when ATTP implies that Lomborg has received the funding. Lomborg heads up the Copenhagen Consensus Centre and it is they who have received the funding to set up a branch in Australia. This description is from their website

We work with some of the world’s top economists (including 7 Nobel Laureates) to research and publish the smartest solutions to global challenges. Through social, economic and environmental benefit-cost research, we show policymakers and philanthropists how to do the most good for each dollar spent.

It is about bringing together some of the best minds available to understand the problems of the world. It is then to persuade those who are able to do something about the issues. It is not Lomborg’s personal views that are present here, but people with different views and from different specialisms coming together to argue and debate. Anyone who has properly studied economics will soon learn that there are a whole range of different views, many of them plausible. Some glimpse that economic systems are highly interrelated in ways that cannot be remotely specified, leading to the conclusion that any attempt to create a computer model of an economic system will be a highly distorted simplification. At a more basic level they will have learnt that in the real world there are 200 separate countries, all with different priorities. In many there is a whole range of different voiced opinions about what the priorities should be at national, regional and local levels. To address all these interrelated issues together would require the modeller of be omniscient and omnipresent. To actually enact the modeller’s preferred policies over seven billion people would require a level of omnipotence that Stalin could only dream of.

This lack of understanding of economics and policy making is symptomatic of those who believe in climate science. They fail to realize that models are only an attempted abstraction of the real world. Academic economists have long recognized the abstract nature of the subject along with the presence of strong beliefs about the subject. As a result, in the last century many drew upon the rapidly developing philosophy of science to distinguish whether theories were imparting knowledge about the world or confirming beliefs. The most influential by some distance was Milton Friedman. In his seminal essay The Methodology of Positive Economics he suggested the way round this problem was to develop bold yet simple predictions from the theory that, despite being unlikely, are nevertheless come true. I would suggest that you do not need to be too dogmatic in the application. The bold predictions do not need to be right 100% of the time, but an entire research programme should be establishing a good track record over a sustained period. In climatology the bold predictions, that would show a large and increasing problem, have been almost uniformly wrong. For instance:-

  • The rate of melting of the polar ice caps has not accelerated.
  • The rate of sea level rise has not accelerated in the era of satellite measurements.
  • Arctic sea ice did not disappear in the summer of 2013.
  • Hurricanes did not get worse following Katrina. Instead there followed the quietest period on record.
  • Snow has not become a thing of the past in England, nor in Germany.

Other examples have been compiled by Pierre Gosselin at Notrickszone, as part of his list of climate scandals.

Maybe it is different in climatology. The standard response is that the reliability of the models is based on the strength of the consensus in support. This view is not proclaimed by ATTP. Instead from the name it would appear he believes the reliability can be obtained from the basic physics. I have not done any physics since high school and have forgotten most of what I learnt. So in discerning what is reality in that area I have to rely on the opinions of physicists themselves. One of the greatest physicists since Einstein was Richard Feynman. He said fifty years ago in a lecture on the Scientific Method

You cannot prove a vague theory wrong. If the guess that you make is poorly expressed and the method you have for computing the consequences is a little vague then ….. you see that the theory is good as it can’t be proved wrong. If the process of computing the consequences is indefinite, then with a little skill any experimental result can be made to look like an expected consequence.

Climate models, like economic models, will always be vague. This is not due to being poorly expressed (though they often are) but due to the nature of the subject. Short of rejecting climate models as utter nonsense, I would suggest the major way of evaluating whether they say something distinctive about the real world is on the predictive ability. But a consequence of theories always being vague in both economics and climate is you will not be able to use the models as a forecasting tool. As Freeman Dyson (who narrowly missed sharing a Nobel Prize with Feynman) recently said of climate models:-

These climate models are excellent tools for understanding climate, but that they are very bad tools for predicting climate. The reason is simple – that they are models which have very few of the factors that may be important, so you can vary one thing at a time ……. to see what happens – particularly carbon dioxide. But there are a whole lot of things that they leave out. ….. The real world is far more complicated than the models.

This implies that when ATTP is criticizing somebody else’s work with a simple model, or a third person’s work, he is likely criticizing them for looking at a highly complex issue in another way. Whether his way is better, worse or just different we have no way of knowing. All we can infer from his total rejection of ideas of experts in a field to which he lacks even a basic understanding, is that he has no basis of knowing either.

To be fair, I have not looked at the earlier part of ATTP’s article. For instance he says:-

If you want to read a defense of Lomborg, you could read Roger Pielke Jr’s. Roger’s article makes the perfectly reasonable suggestion that we shouldn’t demonise academics, but fails to acknowledge that Lomborg is not an academic by any standard definition…….

The place to look for a “standard definition” of a word is a dictionary. The noun definitions are

noun

8. a student or teacher at a college or university.

9. a person who is academic in background, attitudes, methods, etc.:

He was by temperament an academic, concerned with books and the arts.

10. (initial capital letter) a person who supports or advocates the Platonic school of philosophy.

This is Bjorn Lomborg’s biography from the Copenhagen Consensus website:-

Dr. Bjorn Lomborg is Director of the Copenhagen Consensus Center and Adjunct Professor at University of Western Australia and Visiting Professor at Copenhagen Business School. He researches the smartest ways to help the world, for which he was named one of TIME magazine’s 100 most influential people in the world. His numerous books include The Skeptical Environmentalist, Cool It, How to Spend $75 Billion to Make the World a Better Place and The Nobel Laureates’ Guide to the Smartest Targets for the World 2016-2030.

Lomborg meets both definitions 8 & 9, which seem to be pretty standard. Like with John Cook and William Connolley defining the word sceptic, it would appear that ATTP rejects the authority of those who write the dictionary. Or more accurately does not even to bother to look. Like with rejecting the authority of those who understand economics it suggests ATTP uses the authority of his own dogmatic beliefs as the standard by which to evaluate others.

Kevin Marshall

Freeman Dyson on Climate Models

One of the leading physicists on the planet, Freeman Dyson, has given a video interview to the Vancouver Sun. Whilst the paper emphasizes Dyson’s statements about the impact of more CO2 greening the Earth, there is something more fundamental that can be gleaned.

Referring to a friend who constructed the first climate models, Dyson says at about 10.45

These climate models are excellent tools for understanding climate, but that they are very bad tools for predicting climate. The reason is simple – that they are models which have very few of the factors that may be important, so you can vary one thing at a time ……. to see what happens – particularly carbon dioxide. But there are a whole lot of things that they leave out. ….. The real world is far more complicated than the models.

I believe that Climate Science has lost sight of what this understanding of what their climate models actually are literally attempts to understand the real world, but are not the real world at all. It reminds me of something another physicist spoke about fifty years ago. Richard Feynman, a contemporary that Dyson got to know well in the late 1940s and early 1950s said of theories:-

You cannot prove a vague theory wrong. If the guess that you make is poorly expressed and the method you have for computing the consequences is a little vague then ….. you see that the theory is good as it can’t be proved wrong. If the process of computing the consequences is indefinite, then with a little skill any experimental result can be made to look like an expected consequence.

Complex mathematical models suffer from this vagueness in abundance. When I see supporters of climate arguing the critics of the models are wrong by stating some simple model, and using selective data they are doing what lesser scientists and pseudo-scientists have been doing for decades. How do you confront this problem? Climate is hugely complex, so simple models will always fail on the predictive front. However, unlike Dyson I do not think that all is lost. The climate models have had a very bad track record due to climatologists not being able to relate their models to the real world. There are a number of ways they could do this. A good starting point is to learn from others. Climatologists could draw upon the insights from varied sources. With respect to the complexity of the subject matter, the lack of detailed, accurate data and the problems of prediction, climate science has much in common with economics. There are insights that can be drawn on prediction. One of the first empirical methodologists was the preeminent (or notorious) economist of the late twentieth century – Milton Friedman. Even without his monetarism and free-market economics, he would be known for his 1953 Essay “The Methodology of Positive Economics”. Whilst not agreeing with the entirety of the views expressed (there is no satisfactory methodology of economics) Friedman does lay emphasis on making simple, precise and bold predictions. It is the exact opposite of the Cook et al. survey which claims a 97% consensus on climate, implying that it relates to a massive and strong relationship between greenhouse gases and catastrophic global warming when in fact it relates to circumstantial evidence for a minimal belief in (or assumption of) the most trivial form of human-caused global warming. In relation to climate science, Friedman would say that it does not matter about consistency with the basic physics, nor how elegantly the physics is stated. It could be you believe that the cause of warming comes from the hot air produced by the political classes. What matters that you make bold predictions based on the models that despite being simple and improbable to the non-expert, nevertheless turn out to be true. However, where bold predictions have been made that appear to be improbable (such as worsening hurricanes after Katrina or the effective disappearance of Arctic Sea ice in late 2013) they have turned out to be false.

Climatologists could also draw upon another insight, held by Friedman, but first clearly stated by John Neville Keynes (father of John Maynard Keynes). That is on the need to clearly distinguish between the positive (what is) and the normative (what ought to be). But that distinction was alienate the funders and political hangers-on. It would also mean a clear split of the science and policy.

Hattips to Hilary Ostrov, Bishop Hill, and Watts up with that.

 

Kevin Marshall

Massive Exaggeration on Southern Alaskan Glacial ice melt

Paul Homewood has a lovely example of gross exaggeration on climate change. He has found the following quote from a University of Oregon study

Incessant mountain rain, snow and melting glaciers in a comparatively small region of land that hugs the southern Alaska coast and empties fresh water into the Gulf of Alaska would create the sixth largest coastal river in the world if it emerged as a single stream, a recent study shows.

Since it’s broken into literally thousands of small drainages pouring off mountains that rise quickly from sea level over a short distance, the totality of this runoff has received less attention, scientists say. But research that’s more precise than ever before is making clear the magnitude and importance of the runoff, which can affect everything from marine life to global sea level.

The collective fresh water discharge of this region is more than four times greater than the mighty Yukon River of Alaska and Canada, and half again as much as the Mississippi River, which drains all or part of 31 states and a land mass more than six times as large.

“Freshwater runoff of this magnitude can influence marine biology, near shore oceanographic studies of temperature and salinity, ocean currents, sea level and other issues,” said David Hill, lead author of the research and an associate professor in the College of Engineering at Oregon State University.

“This is an area of considerable interest, with its many retreating glaciers,” Hill added, “and with this data as a baseline we’ll now be able to better monitor how it changes in the future.” (Bold mine)

This implies that melting glaciers are a significant portion of the run-off. I thought I would check this out. From the yukoninfo website I find

The watershed’s total drainage area is 840 000 sq. km (323 800 sq. km in Canada) and it discharges 195 cubic kilometres of water per year.

Therefore the runoff is about 780 cubic kilometres per year.

From Wikipedia I find that the Mississippi River has an average annual discharge of 16,792 m3/s. This implies the average discharge into the Gulf of Alaska is about 25,000 m3/s. This equates to 90,000,000 m3 per hour or 2,160,000,000 m3 per day. That is 2.16 cubic kilometres per day, or 788 cubic kilometres per year. If this gross runoff was net, it would account for two thirds of the 3.2mm sea level rise recorded by the satellites. How much of this might be from glacial ice melt? This is quite difficult to estimate. From the UNIPCC AR5 WGI SPM of Sept-13 we have the following statement.

Since the early 1970s, glacier mass loss and ocean thermal expansion from warming together explain about 75% of the observed global mean sea level rise (high confidence). Over the period 1993 to 2010, global mean sea level rise is, with high confidence, consistent with the sum of the observed contributions from ocean thermal expansion due to warming (1.1 [0.8 to 1.4] mm yr–1), from changes in glaciers (0.76 [0.39 to 1.13] mm yr–1), Greenland ice sheet (0.33 [0.25 to 0.41] mm yr–1), Antarctic ice sheet (0.27 [0.16 to 0.38] mm yr–1), and land water storage (0.38 [0.26 to 0.49] mm yr–1). The sum of these contributions is 2.8 [2.3 to 3.4] mm yr–1. {13.3}

How much of this 0.76 mm yr–1 (around 275 cubic kilometres) is accounted for by Southern Alaska?

The author of the Oregon study goes onto say.

This is one of the first studies to accurately document the amount of water being contributed by melting glaciers, which add about 57 cubic kilometers of water a year to the estimated 792 cubic kilometers produced by annual precipitation in this region.

That is 20% (range 14-40%) of the global glacial ice melt outside of Greenland and Iceland is accounted for by Southern Alaska. Northern and Central Alaska, along with Northern Canada are probably far more significant. The Himalayan glaciers are huge, especially compared to the Alps or the Andes which are also meant to be melting. There might be glaciers in Northern Russia as well. Maybe 1%-10% of the global total comes from Southern Alaska, or 3 to 30 cubic kilometres per annum, not 14-40%. The Oregon Article points to two photographs on Flikr (1 & 2) which together seem less than a single cubic kilometre of loss per year. From Homewood’s descriptions of the area, most of the glacial retreat in the area may have been in the nineteenth and early twentieth centuries.

Maybe someone can provide a reconciliation that will make the figures stack up. Maybe the 57 cubic kilometres is a short-term tend – a sibgle year even?

Kevin Marshall

Dixon and Jones confirm a result on the Stephan Lewandowsky Surveys

Congratulations to Ruth Dixon and Jonathan Jones on managing to get a commentary on the two Stephan Lewandowsky, Gilles Gignac & Klaus Oberauer surveys published in Psychological Science. Entitled “Conspiracist Ideation as a Predictor of Climate Science Rejection: An Alternative Analysis” it took two years to get published. Ruth Dixon gives a fuller description on her blog, My Garden Pond. It confirms something that I have stated independently, with the use of pivot tables instead of advanced statistical techniques. In April last year I compared the two surveys in a couple of posts – Conspiracist Ideation Falsified? (CIF) & Extreme Socialist-Environmentalist Ideation as Motivation for belief in “Climate Science” (ESEI).

The major conclusion through their analysis of the survey

All the data really shows is that people who have no opinion about one fairly technical matter (conspiracy theories) also have no opinion about another fairly technical matter (climate change). Complex models mask this obvious (and trivial) finding.

In CIF my summary was

A recent paper, based on an internet survey of American people, claimed that “conspiracist ideation, is associated with the rejection of all scientific propositions tested“. Analysis of the data reveals something quite different. Strong opinions with regard to conspiracy theories, whether for or against, suggest strong support for strongly-supported scientific hypotheses, and strong, but divided, opinions on climate science.

In the concluding comments I said

The results of the internet survey confirm something about people in the United States that I and many others have suspected – they are a substantial minority who love their conspiracy theories. For me, it seemed quite a reasonable hypothesis that these conspiracy lovers should be both suspicious of science and have a propensity to reject climate science. Analysis of the survey results has over-turned those views. Instead I propose something more mundane – that people with strong opinions in one area are very likely to have strong opinions in others. (Italics added)

Dixon and Jones have a far superior means of getting to the results. My method is to input the data into a table, find groupings or classifications, then analyse the results via pivot tables or graphs. This mostly leads up blind alleys, but can develop further ideas. For every graph or table in my posts, there can be a number of others stashed on my hard drive. To call it “trial and error” misses out the understanding to be gained from analysis. Their method (through rejecting linear OLS) is loess local regression. They derive the following plot.

This compares with my pivot table for the same data.

The shows in the Grand Total row that the strongest Climate (band 5) comprise 12% of the total responses. For the smallest group of beliefs about conspiracy theories with just 60/5005 responses, 27% had the strongest beliefs in about climate. The biggest percentage figure is the group who averaged a middle “3” score on both climate and conspiracy theories. That is those with no opinion on either subject.

The more fundamental area that I found is that in the blog survey between strong beliefs in climate science and extreme left-environmentalist political views. It is a separate topic, and its inclusion by Dixon and Jones would have both left much less space for the above insight in 1,000 words, and been much more difficult to publish. The survey data is clear.

The blog survey (which was held on strongly alarmist blogs) shows that most of the responses were highly skewed to anti-free market views (that is lower response score) along with being strongly pro-climate.

The internet survey of the US population allowed 5 responses instead of 4. The fifth was a neutral. This shows a more normal distribution of political beliefs, with over half of the responses in the middle ground.

This shows what many sceptics have long suspected, but I resisted. Belief in “climate science” is driven by leftish world views. Stephan Lewandowsky can only see the link between the “climate denial” beliefs and free-market, because he views left-environmentalist perspectives and “climate science” as a priori truths. This is the reality that everything is to be measured. From this perspective climate science has not failed due to being falsified by the evidence, but because scientists have yet to find the evidence; the models need refining; and there is a motivated PR campaign to undermine these efforts.

Kevin Marshall

 

 

 

 

 

Follow

Get every new post delivered to your Inbox.

Join 47 other followers